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Abstract—Algorithms and programs for the normalization of polynomial Hamiltonians of classical mechanics
by the Birkhoff—Gustavson and Deprit—Hori, as well as quasi-classical quantization procedures for normal
forms, are compared. The algorithms and programs are represented in a universal pseudocode and implemented
in the computer algebra systems REDUCE, MAPLE, and MATHEMATICA. Examples that illustrate the oper-
ation of these algorithms and programs for polynomial Hamiltonians of atomic systems in external electromag-

netic fields are considered.

1. INTRODUCTION

Algorithms for reducing the classical Hamiltonian
to the normal form and the subsequent quantization are
widely used for the integration and analysis of classical
and quantum equations of motion [1, 2]. Since the
Hamiltonian of a hydrogen-like atom is related to the
Hamiltonian of the harmonic oscillator by the Levi—
Civita transform [3], the method of normal form quan-
tization is also applied for the calculation of character-
istics of atomic systems in external fields [4, 5]. By way
of example, we consider the calculation of the quasi-
classical spectrum of a two-dimensional hydrogen
atom in the electric field of a distant point charge and
compare the result with the spectrum of the quantum
problem [6].

The application of various computer algebra sys-
tems significantly extends the capabilitics of various
implementations of normalization procedures [7-9].
Therefore, the representation of such algorithms in a
universal pseudocode and their comparison is impor-
tant for the evaluation of their efficiency and implemen-
tation [10].

In this paper, we compare algorithms for reducing
the class of polynomial Hamiltonians (anharmonic
oscillators) to the normal form by the Birkhoff-Gustav-
son method and Lie transformations (the Deprit—-Hori
method); we also compare procedures for finding an
approximate integral of motion and constructing a
quantum analog of the normal form. The procedures
are represented in a pseudocode. Examples that illus-
trate the operation of these algorithms and programs for
polynomial Hamiltonians of atomic systems in external
clectromagnetic fields are considered. The algorithms
are implemented in REDUCE, MAPLE, and MATHE-
MATICA.

2. NORMALIZATION PROCEDURE

Consider algorithms for the construction of the
Birkhoff—Gustavson normal form [11] for Hamilto-
nians that can be represented in the polynomial form in
the vicinity of an equilibrium point in the phase space
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The normalization procedure consists of finding the
new Hamiltonian
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and the canonical transformation (g, p) <— (&, n) that
relates Hamiltonians (1) and (4). Here, TW(E, n) are
homogeneous polynomials of degree s that satisfy the fol-
lowing relation, which involves the Poisson brackets {,}:
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Depending of the definition of the canonical trans-
formation (g, p) — (&, n), there are several methods
for obtaining normal forms [1].

The Birkhoff—Gustavson (BG) method [11] is based
on the representation of old momenta p and new coor-
dinates & in terms of the new momenta 1 and old coor-
dinates g as
_ a WBG a WBG
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using the generating function of the second type
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The Deprit—Hori (DH) method [12, 13] is based on
the representation of old canonical variables (g, p) in

terms of the new variables (&, n)):!
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For this purpose, the generator
Wou(&M) = Y, WEn(E.n) ©)

k=3

is used. Here, the operator L’;V is defined by the recur-

rence L’;V = LW(LI;;1 ), L(;V =1 in terms of the Lie dif-
ferential operator

Lyf=L(f, W) = {f. W} (10)

Substituting series (6) or (8) into the basic equation

H(g, p) = T(E ).

expanding the left-hand and right-hand sides in the Tay-
lor series in powers of the canonical variables (g, n) or
(€, M), and separating homogeneous polynomials of
degrees s =3, 4, ..., sma Of these variables, we obtain
the system of equations

Y= w9+ 1Y+ 1, (11)

which can be solved sequentially beginning with s = 3.
In Eq. (11), the unknowns are the components of the
new Hamiltonian T and the components of the gener-

ating function W3 = W® or of the generator Wiy, =
W®. The auxiliary polynomials 7, depend on the com-

! The equivalence of the methods proposed in [12, 13] was estab-
lished 1n [14].

ponents I'®), W) and H®), which are determined ear-
lier. Here, s'=3, ...,s— 1l and 75 =0.

The Birkhoff-Gustavson algorithm with the gener-
ating function (7) was described in [10] in terms of a
universal pseudocode. Here, we present a pseudocode
for finding the normal forms (11) by the Deprit—Hori
method with the generator (9).

Algorithm 1

Input:

n is the number of degrees of freedom;
Smax 18 the order of normalization;

o, are the frequencies;

H® are the homogeneous polynomials of degree s of
the initial Hamiltonian.

QOutput:

W) are the homogeneous polynomials of degree s
of the generating function;

G are the homogeneous polynomials of degree s of
the Hamiltonian to be found.

Local:
v=1, ..., nis the index of a degree of freedom;

§ =3, ..., Spax 18 the step number of the normaliza-
tion procedure;

k=(ky, ko, ..., k) 1s a multindex;
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P ky o e kK k, .
=919 .49, P =P1 P2 - Pns-es

x, and y, are auxiliary coordinates;

H Efn) , rﬁf,j ,and VV§2 are auxiliary coefficients;
1=, L, ... ,m,).
Global:

g, and p, are the current coordinates and momenta.
Functions:
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end for

end of procedure

This procedure involves the following sequence of
steps.

Step 1. Finding the auxiliary polynomial 7. In con-
trast to Steps 2-6, it is specific for the Deprit—-Hori
method.

Steps 2-3. Switching to the auxiliary variables (x, y)
and finding the coefficients of the polynomial 7.

Step 4. Solution of Eq. (11). The selection of the
auxiliary variables (x, y) is caused by the fact that the
monomial x’y” is an eigenfunction of the normal form

operator. If the corresponding eigenvalue is nonzero
(the branch then), we have a single equation with two

unknown coefficients ng and Ggfn) . When calculating

Table 1

1 Example 1 2 3 4
2 | Spnax 40 4 4 6
3 | NMH 3 5 8 26
4 | NMG 230 14 46 200
5 | NMWgq 209 22 590 164
6 | NMWpy 209 17 410 164

Time 7 S S S S
7 | BG(mws) 89.1 2.0 542 7.9
8 | DH(mws) 25.4 1.3 29.6 5.1
9 | BG(nb) 16.4 2.1 16.2 4.6
10 | DH(nb) 20.9 1.1 3.8 2.0
11 | BG(red) [10]| 90.5 0.2 78.8 3.0
12 | DH(red) 18.5 0.2 18.2 2.8
13 | DH(red) [7] | 106.0 0.3 23 8.2

the normal form,” we set G(S) = 0 and solve this equa-
tion in W . If the corresponding eigenvalue is zero
(the branch else), we calculate the coefficient G (while

setting the corresponding coefficient W< to zero).

Steps 5-6. Constructing the polynomials ¢ and
G® and changing to the coordinates (g, p).

The efficiency of Algorithm 1 implemented in vari-
ous computer algebra systems is illustrated in Table 1.
This table presents the number of monomials NM, the
computation time (in seconds) of the normal form G
and the generator Wy up the given order sy, for the
following polynomial Hamiltonians H.

Example 1.

H(g,p) = %(pfwf)wlqi‘.
Example 2.
H(q,p) = %(pf+qf)+%(p§+q§)+aqfqz.

Example 3.

3
®
H(q.p) = Y, 5 (Py+40)+ g3+ Bggs.

v=1

2 When solving other problems, for example, when reconstructing
the class of polynomial Hamiltonians that can be reduced to the
given normal form by canonical transformations [10], the coeffi-

cients Ggfn) = cgm) are arbitrary complex constants c( 9 ez
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4
1
= 32,4+ 1))

J=1

AF
- E(Cﬁ + @+ G+ NG~ G- g+ qL)

4
- w—Z(Cﬁ + @5+ GGG+ 4+ 4.

Row 1 of Table 1 contains the number of the exam-
ple, and row 2 shows the order of normalization s,,,,.
Rows 3-6 show the number of monomials (NM)
mvolved in the initial Hamiltonian H, in the normal
form G, in the generating function Wy (7), and in the
generator Wpp (9). Rows 7-12 show the execution time
of the normalization procedure (in seconds) on a
Pentium-III based computer with 600 MHz 128 MByte
RAM under Windows 98. The procedure was based on
the Birkhoff-Gustavson (BG) and Deprit—Hori (DH)
methods, which were implemented in REDUCE (red),
MAPLE (mws), and MATHEMATICA (nb). Row 13
shows the execution time of the program described in
[7]. In that program, monomials are sequentially sub-
tracted from the component H® of the Hamiltonian rep-
resented in terms of the initial variables (with account
for Step 1) until this component vanishes, and Steps 2,
4, and 6 of Algorithm 1 are applied to cach of these
monomials. In our implementation of Algorithm 1, the

list of coefficients tﬁfn) is composed before executing

Step 4, and Step 4 is applied to each of these coeffi-
cients. In the first case, the memory is saved, while the
number of operations is saved in the second case.

When the algorithm is implemented, the greatest
saving of the computation time is obtained when
expressions are fully expanded (which is done by the
operator expand in MAPLE and MATHEMATICA).
When other operators are used for simplifying alge-
braic expressions (simplify, collect, etc.), a significant
part of the computation time is spent on reducing these
expressions to the form that is required by the inter-
preter of the system.

It is seen from Table 1 that the computation time sig-
nificantly increases when the frequencies are specified
as incommensurable parameters (examples 2 and 3)
compared to an explicit specification of the frequencies
(examples 1 and 4). This is because intermediate alge-
braic expressions involve rational fractions with poly-
nomial denominators. The expansion of such expres-
sions is most efficient in MATHEMATICA.

The computation time also depends on specific fea-
tures of the interpreter and on the structure of the com-
ponents of the Hamiltonian H* (s > 3). In example 1,
the computation by the BG method in MATHEMAT-
ICA is by a factor of 1.3 faster than the computation by
the DH method in MATHEMATICA; however, the

computation by the BG method in REDUCE is by a
factor of 4.9 slower than the computation by the DH
method in REDUCE. In example 2, we see the converse
situation.

Remark. To reduce the number of operations (due
to substitutions), it is reasonable to switch to the com-
plex variables at step 2 before executing the main loop
(on the variable s) of Algorithm 1, which requires the
corresponding redefinition of the function L.

3. INTEGRALS OF MOTION

One advantage of the Deprit—Hori method is in the
explicit algorithm that transforms an arbitrary function
ffrom one canonical variables (g, p or &, 1) to the other

for the given generator W = Wy

fGopd) = fEM)+ Y Tl fEny).
k=1

Sinax — 2 i
fEam) = faw )+ Y S G p).
k=1

The corresponding algorithm is presented in the
pseudocode.

Algorithm 2
Input:

0 : 1 denotes that the function given in the old vari-
ables is to be represented in terms of the new variables
(direct change)

—1 denotes that the function given in the new vari-
ables is to be represented in terms of the old variables
(inverse change)

Jfo(gy, py) 1s the function represented in terms of the
initial variables.

QOutput:

fi(gy, py) 1s the function represented in terms of the
desired variables.

Comment: The definition of the global functions L
and W are given in Algorithm 1.

1: for s =3 to s, do

& = L(fo(Gw: pv) W)
end for

2. forj =2 t0 sy, — 2 do
for s :=3 to 5, do

s—1
dE'S) = EL(d;sj12—l)’ W(z))
t=3

end for
end for
3: for s := 3 t0 5, do



: Smax ~ de(s)
G p) =Y, 3

j=1

end for

Smax

4 filgy P =flav- P+ Y 11 (@0 22).

5=3
Substituting the coordinates g, and momenta p,, for
folgy» pv), we obtain a procedure for deriving an explicit
relation between the old and new coordinates and
momenta.

Remark. In the implementation of the algorithms,
we use the same notation for the old and new variables
in order to reduce the number of operations (due to sub-
stitutions).

The same procedure is used to find approximate
integrals of motion. To this end, we use the Gustavson
proposition (see [11]): for the system with » degrees of
freedom and r resonance relations

2 bk,v(’)v = O:

v=1

(12)

there exists an (n — r)-parametric integral of motion,
which can be calculated by the following algorithm.

Algorithm 3

Input:

n is the number of degrees of freedom;

7 18 the number of resonance relations;

b, are the elements of matrix (12).

QOutput:

1 is the integral of motion.

Local:

v=1, ..., nis the index of a degree of freedom;
k=1, ..., ris the index of a resonance relation;
egs 1s the auxiliary system of equations;

sol is the solution to system egs.

Global:

€, and n, are the coordinates and momenta;

a, are auxiliary variables.

1= 2 S(EL+ ML)
v=0,k= 1,...,r]

v=1
2. eqs = Zisr(E by ya
v=1

3:50l = (ay, ..., a,) = solve(egs, (a,, ..., a,))

4: 1 :=subs(sol, I)

Substituting the result produced by Algorithm 3 at
the input of Algorithm 2 for the function fy(q,, p,) (for
0 =-1), we find an approximate integral of motion for
the given Hamiltonian H. To compare the efficiency of

Table 2

Example 2 3 4
NMIpy 75 2120 198
Time 7 s S s

DH(mws) 1.3 - 0.2
DH(nb) 0.8 73 04

DH(red) 0.1 6.1 0.6

Algorithm 2 based on different methods and implemen-
tations, we present in Table 2 the computation time 7'
(in seconds) and the number of monomials NMI of the
approximate integral of motion 7; the other notation is
the same as in Table 1.

4. QUANTIZATION PROCEDURE

The procedure of quasi-classical quantization
reduces the normal form (4) to the quantum normal
form

f(at a) = 2 IA“(S)(J, a

5s=2

(13)

using the Weyl transformation (p, g) — (a*, a) [15].
The quantum normal form is represented in terms of the
production and annihilation operators a, , a,, [a , a,] =
Sy (U, v ., n). This procedure also finds the
result of the action

Smax

G = EG(S)EI—A‘(GJr’a)lkl’kZ: "'7kn>:

5=2
G™ = 1", a)lky. sy ... Ky

of the resulting quantum normal form on the basis of
the n-dimensional harmonic oscillator |k, k,, ..., k).
The corresponding algorithm of the quasi-classical nor-
mal form quantization is written in the pseudocode.

Algorithm 4

Input:

n is the number of degrees of freedom;

Smax 18 the order of normalization;

w, are the frequencies;

I'® are the components of the normal form.
QOutput:

1e‘(S)

form;
G are the actions of the components of the normal
form operator I'®) on the eigenfunction |k, &, ..., k) of

(14)

are the components of the quantum normal

the operator r?
Local:



v=1, ..., nis the index of a degree of freedom;
z,and z¥ are auxiliary variables;

I, m, and m' are the parameters of the Weyl transfor-
mation.

Global:
&, and n, are the coordinates and momenta;

a, and a, are the production and annihilation oper-
ators; |k, ky, ..., k,) are the basis functions of the
n-dimensional harmonic oscillator;

k, are the quantum numbers.
1: for s: =3 to s, do

1
2:T® = subs(nv — E (z, + z¥),
1
&v - E (Zv + Zj ): ﬂs))
~s) m'
3T subs(zvzV

. ,\+l,\m ,\+m ! (s)
Ell(m 1)| T J

(S)

4: GO =T" |k, ks, ... k)

5: while G® > a, " do

G = subs

(ay| k) — oy T 1],k +1,)
af k) — Jhy| k= 1), GO)
end while

end for (1))

The results produced by Algorithm 4 are used to
solve the eigenvalue problem

By = MBI, (15)

By way of example, consider the Hamiltonian of the
two-dimensional hydrogen atom (2 = 2) with the charge
Z,1n the electric field of a distant point charge Z, for a
fixed £ <0:

= ‘(Pl +P2+91 +92)

-3/2
VT2

R (q1-9>) (16)

| Zy(2E)°
4R

where € = R! < 1 is the reciprocal of the distance
between the charges Z, and Z;,. Algorithm 1 produced
the Birkhoff—Gustavson normal form (4). For s, = 8,

(1 + )G - 4qig+q) + ...,

all odd-order terms of this form vanish. Here are the
first two nonzero terms:

1
T = S+ +E+ 8.

17
e a7

16R’

Using Algorithm 4, we find the result of the action
of the normal form on the eigenfunction of the two-
dimensional harmonic oscillator (|k;, ,)):

G = Ty, k)

((n1+i) _(nz"'&z))

= (C’Yal + 5’;5’2 + l)lkb ky)
3Z,(-2E)""
T( Yzaf +2a,a,
- agzag - 2a§a2)|k1, ky + ...
= (k) +k, + l)lkb k2>

3Zy(-2E)"

(k) + ky+ 1)k = ky)|ky, ko)
4R’

3Z,(28)°
8K’

(kythky+1)

X — k) (K + 3k + 2) e, — 2.k, + 2)

3Zy(2E)°
8K’

(ki +k,+1)

X U+ 3k, + 2) (K~ k) + 2, k= 2) + ...

To solve the eigenvalue problem (15), we represent
in the form of series the action G of the normal form

operator I" on the vector ks, k)

G = (ky+k,+ D)k, k)

Jm
+y R’ 2 T anydllei +a by - a), (9
j=1  a=-j+1
the desired eigenvector
Jm—1 j-1
=N RN b ki tak-a), (19
j=0 a=—j+1
and the spectral parameter
Jm
ME) = Y R (20)
Jj=0



To find the coefficients b,(jl ) ak,—a and A0 in the

expansions (19) and (20) with the small parameter € =
R, we use a fragment of the algorithm for solving the
eigenvalue problem (15) in the form of a system of non-
homogeneous algebraic equations [6]:

7 _ )
flkz—o—’7L >

(/) 7-2) (21)
fk]1+ak2 a bk]+ak2 as aio:
with the initial conditions
() (0) _
bkl,k2 - 1: bk1+a,k2—a - O: aio: (22)

A =k k1
The quasi-classical spectrum £, ; of the hydrogen
atom in the field of a distant point charge is found from
the algebraic equation3

A(En,d) = Za/\l_z/En, >

where n = (k; + k,)/2 + 1/2 and d = (k; — k,)/2, using the
standard procedure

Z.  3Z
E,g=-—+ bznd
27 27Z.R
2
7,
+ 2P 6d - 1+ 8
272
‘dz
- L2 (1560 - 43647 — 227 + 8Y)
64 7R’
‘72
-2 (6807 - 1247+ 85+ 85) + ...
64Z'R

Here, 81@ = 0. The spectrum determined in the frame-
work of the quantum-mechanical perturbation theory
[6] differs from the quasi-classical spectrum (23) only in
the values of 8 ; in particular, 8’ = 8 =0 and 8" =
—18. The total computation time for this example (with
smax = 10) by Algorithms 1 and 4 and by the fragment

of the algorithm for solving the eigenvalue problem
(15) implemented in MAPLE is 90 s.

5. CONCLUSIONS

The representation of the normal form depends on
the relationship between the frequencies: if the fre-
quencies ®, are incommensurable, i.e., the relations
N @y (my — 1) =0hold only for m, =1, (v=1,2,

., n), then the Hamiltonian has » independent inte-

grals of motion 7, = (&, + n)/2. Then, the action of the

3 Note that only even values of k; and k, have a physical meaning.

corresponding quantum operator I takes the diagonal

form G = Tk, ks, ..., k,) = Yk1 ko ..., k,); and for
solving the eigenvalue problem (15), it is sufficient to
solve the equation v = A(F). In this case, the eigenfunc-
tion of the problem coincides with the eigenfunction

k1, ks, ... k,) of the operator I Ifthe frequencies m,
are commensurable, then usually not all quantities 7, =

(Ej + ni )/2 are integrals of motion, and the action of

the normal form operator on the basis of the #-dimen-
sional harmonic oscillator G has a nondiagonal form.
Since the initial Hamiltonian involves a small parame-
ter € (in the example under consideration, £ = R!), the
function GG can be expanded in the series

n Jm
_ 1 () J
G = {E(kﬁi)}vcl,kz, ...,kn>+zlG g,
e

v=1

where [/ 2 1. If G? is given in the diagonal representa-

tion GO = 7 k. ...k, |1 ... k), then the eigenfunctions in
the layer (in the subspace of the finite dimension
(ky, ..., ky|d = Ezzl(kv))) and the eigenvalues are

found in the form of algebraic expressions in terms of
the quantum numbers 4, ..., &, from Eqs. (21). Note
that the algorithm for the calculation of the spectrum in
the quantum problem takes more computational
resources, since it assumes the calculation of the coef-

ficients b, . in a layer of a higher dimension
(ky, ... k) (see [6]).

If GP is given in the nondiagonal representation

G(l): Ek'l,m,k'n kY, .k, |k1 5 eees

the eigenvalues and eigenfunctions are found from the
secular equations (in a subspace of the finite dimension

(ky, ... k,|d= 23 _, k) that is determined by approx-
imate integrals of motion [16]). In certain cases, G¥ can be
diagonalized by passing to new production and annihila-

tion operators [4]; in other cases, G are determined by
solving the corresponding three-term recurrences [17].

k., ), then corrections to

The algorithms considered in this paper provide an
efficient solution of the direct and inverse normaliza-
tion problems for the class of polynomial Hamiltonians
[18]; moreover, they provide means for the investiga-
tion of the dynamics of systems of coupled oscillators
with polynomial interaction and atomic systems in
external electromagnetic fields [19, 20].
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