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Abstract—TIonization energy losses of an ultrarelativistic electron produced in matter are considered. The inter-
ference of the proper Coulomb field of the product particle and the electromagnetic wave that this particle emits
is shown to be significant at impact-parameter values that make a dominant contribution to the ionization energy
losses. The effect is shown to exert virtually no influence on the ionization energy losses of the particle. -

1. Ionization energy losses of clusters formed by
fast charged particles occurring at small distances from
one another may differ significantly from the total ion-
ization energy losses of the individual particles consti-
tuting the cluster if these particles are far from one
another. This distinction is associated with the interfer-
ence of the electromagnetic fields created by the parti-
cles of the cluster at distances that contribute signifi-
cantly to ionization energy losses. Such a situation
emerges, for example, when a high-energy electron—
positron pair is produced in matter [1]. The point is that
the characteristic angles of divergence of a high-energy
pair produced in matter are very small. It follows that,
over rather long a time interval, the transverse distance
between the particles of the pair will be small in rela-
tion to the maximum impact-parameter values of p,,, ~
v/®,, (v is the particle velocity, and ®, is the plasmon
frequency) that contribute significantly to the ioniza-
tion energy losses of the individual particles of the pair.
The electromagnetic fields of the electron and the
positron of the product pair compensate each other partly
at distances of v/, the from the pair in the transverse
direction; therefore, the ionization energy losses of such
a cluster are smaller than the ionization energy losses of
the individual particles. By way of example, we indicate
that, at photon energies of m ~ 100 GeV, characteristic
angles of divergence of the particles forming the pair are
estimated as 0, ~ 4mc*/h® ~ 2 x 107 rad, so that the
reduction of the ionization energy losses of the product
pair must manifest itself at longitudinal distances of / ~
Pmax/0: ~ 0.05 cm from the pair-production vertex. This
effect was observed in cosmic rays [1].

A similar effect occurs in the Coulomb explosion of
fast molecules in a thin layer of matter [2]. The similar-
ity of these two processes was noticed in [3].

For a long time, the electromagnetic field surround-
ing a high-energy charged particle (electron) produced
in matter can differ significantly from the normal
proper field of a similar particle that moves at a con-
stant speed in the same direction [4, 5]. The effect is
determined by the interference of the Coulomb field of
the electron and the field of the electromagnetic wave
that this electron emits. An ultrarelativistic electron
emits waves predominantly at small angles with respect
to its velocity, © ~ mc*/E, where E is the electron
energy. As a result, an electron, with its Coulomb field,
and the emitted electromagnetic wave will be at small
distances from each other for a long period of time;
hence, the effect of interference between the two ficlds
will be significant. In this sense, the electron and the
clectromagnetic wave emitted by it can be treated as a
cluster formed by the Coulomb field of the electron and
the emitted electromagnetic wave. Such clusters mani-
fest themselves in many processes associated with radi-
ation from ultrarelativistic clectrons in matter, such as
coherent radiation from relativistic electrons in ori-
ented crystals and the Landau—Pomeranchuk effect,
which consists in the suppression of bremsstrahlung
from ultrahigh-energy electrons in amorphous media
(see, for example, [5]). There naturally arises the ques-
tion of whether such a cluster can manifest itself in ion-
ization energy losses of a particle in a medium. This is
the problem to be addressed in the present article.

2. We consider some special features of the evolu-
tion of the field of a particle following its production in
matter and the ionization energy losses of the particle in
this case. First, we analyze the evolution of the field of
a high-energy particle produced in a medium, neglect-
ing the dielectric properties of the medium.

We assume that a charged particle is instantaneously
produced at the time instant # = 0 with a finite velocity v.



The potentials of the particle field are determined by
the equations (¢ = 1)
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where (/) is the Heaviside step function. Solutions to
Egs. (1) and (2) can be represented in terms of the Fou-
rier integrals
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These solutions can also be recast into the form
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where @, and A, determine the conventional Coulomb
field of a charged particle that moves at a velocity v,
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Here, vy = (1 — v?)'” is the Lorentz factor, the z axis is

aligned with v, and p is a radius vector in the plane
orthogonal to v.

The first terms in (3) and (4) describe the potentials
of the conventional Coulomb field of a particle that
moves at a velocity v. The second terms describe the
field of the emitted wave for ¥ — <. In each term in
(3) and (4), the main contribution to the integrals with
respect to k in every comes from k whose directions are
close to the direction of v—more specifically, from the
region where the characteristic angle 6 between k and
vis 6 ~ L. For such k, the relevant Fourier components
of the surrounding field are suppressed over the time
period from r=0to /< (k—k - v)- 1~ 29*/k in relation to
those in the region ¢ > 2y*/k. This means that, over the
period Ar ~ 2¥y?/k, the particle is in a “semibare” state
deprived of its normal Coulomb field. Considering that
the main contribution to the ionization energy losses of
the particle comes from the region £ > ®,/v, we can
expect that the ionization energy losses are suppressed
over the time interval Ar ~ 2y?/k. For electron energies
of E, ~ 100 GeV, we have vA? ~ 10% cm.

Direct calculations reveal, however, that there is no
such effect—that is, the ionization energy losses of the
electron reach their normal value after a lapse of the
time Af ~ pp../v: By using relations (5) and (6), we can
indeed show (in accordance with the Bohr method for
calculating the ionization energy losses [6]) that the

energy losses of a particle at distances z > p,,,, from its
production vertex in matter are given by
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and pp;, is the minimum impact-parameter value that
contributes significantly to the ionization energy losses.
This value is determined on the basis of quantum con-
siderations and is about p~!, where p is the projectile
momentum.

From Eq. (9), we can see that, at z > p,,,,, the cor-
rection to the conventional expression 7} for the energy
lost by the particle in matter owing to the prolonged
existence of the electron in the “semibare™ state is
small. That the ionization energy losses increase within
atime interval smaller than the time over which the nor-
mal Coulomb field of the electron is recovered can be
explained by the fact that the splash A of the field
strength at # = r [see Egs. (5) and (6)] compensates for
the decrease in the ionization energy losses that is asso-
ciated with the absence of the field for distances » > 7.

3. Let us now take into account the dielectric prop-
erties of the medium. In this case, Egs. (1) and (2)
assume the form [7]
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If the diclectric permittivity is given by
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solutions to these equations can be represented as
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Quantity X calculated according to the expressions (dashed
curve) (9) and (solid curve) (16) versus w,r.
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It can easily be seen that, for @, — 0, Egs. (14) and
(15) reduce to Eqgs. (3) and (4). Calculating the ioniza-
tion energy losses on the basis of the method described
in [7], we obtain
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and C=Iny=0. 577 is the Euler constant

The quantity X = (v/(np YT — T,), which deter-
mines the deviation of the ionization energy losses of

the “semibare” electron from the normal encrgy losses
in accordance with expressions (9) and (16), is dis-
played in the figure as a function of ®,7.

For ¢lectron energies of £, ~ 1 GeV, (v/ 0)?, eHT, ~
17; therefore, the difference of the 7" value computed

according to (16) and 7 at distances of a few 0);,1 (that
is, a few p,,, for ultrarelativistic particles) is within 2%.

Thus, we see that the prolonged existence of an elec-
tron deprived of its normal Coulomb field has virtually
no effect on the ionization energy loss of a particle in a
medium. We emphasize, however, that the semibare-
clectron effect is significantly manifested in the radia-
tion from relativistic particles [8].
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