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ABSTRACT. Let B be a linear closed densely defined operator on a Banach space having no resolvent
in general. The paper studies the Cauchy-type problem for the evolutionary fractional-order equation
D*Buf(t), t > 0, where 0 < o < 1, D*u(t) is the Riemann—Liouville fractional derivative of order a.

1. Introduction. Statement of the Problem

In a Banach space I7, let us consider the following Cauchy-type problem:

D%u(t) = Bu(t), t>0, (1.1)
lim I =%u(t) = uy, (1.2)
t—0
¢
where 0 < o < 1, I'~%u(t) = Ti—a) / (t — s)"“u(s) ds is the left-side fractional Riemann—Liouville
— )

0
integral of order 1 — o (I'=% is the identity operator for o = 1), D%u(t) = %Il_o‘u(t) is the left-side
Riemann—Liouville derivative of order a, I'(:) is the gamma-function, and B is a linear closed densely
defined unbounded operator.

The case where the problem (1.1), (1.2) is well posed was considered for 0 < o < 1in [5, 9]. In
these works, it is assumed that the operator B has the resolvent (Al — B)~! that decays in a certain
way for Re A > w and as |[\| = oco. For a = 1, for the uniform well-posedness of the problem (1.1),
(1.2), it is required that the operator B be the generator of a Cp-semigroup [6, 7, 10, 11]. The Cauchy
problem with Caputo fractional derivative was studied in [1].

We do not assume the existence of a resolvent for the operator B, but impose a certain condition
that means that the operator B is subordinated to the generator of the Cy-semigroup in some sense.

Naturally, with such an operator, the problem (1.1}, (1.2) is not well-posed in general. For example,
for ac = 1, the problem (1.1), (1.2) considered on a finite interval contains the direct, as well as inverse,
Cauchy problems.

For a number of ill-posed problems of mathematical physics, the work [12] elaborates the quasi-
inversion method. Its main idea is that to the differential equation, we add a summand containing a
small parameter £, so that for the modified equation the initial problem becomes well-posed. In what
follows, it is shown that a solution of the ill-posed problem can be approximated by solutions of the
well-posed problem. In the present work, we apply the quasi-inversion method for the fractional-order



differential equation in a Banach space. Note that the case of Hilbert case was previously considered
in [4].

Condition 1.1. The linear operator Bis closed, and its domain D(B) is dense in F.

Condition 1.2. (i) There exists an operator A with D(A) C D(B), being the generator of a
Co-semigroup 7T'(t) that satisfies the estimate

IT(1)]| < Mie*?, (1.3)
and is such that
B —A) e =\ —-A)"'Bx, 2eD(B), Rel>uws.

(ii) For any x € E, there exist constants My > 0 and v € [0, 1) such that T'(t)x € D(B) (smoothing
effect) and

| BT(t)z|| < Mat™e*4 ||z||, t € (0,00). (1.4)
If the operator —A is strongly positive (the terminology is taken from [10]), i.e., if

M3
T+ N

| — A)7Y| < ReA >0, M;s>0,

then inequality (1.4) means that the operator B is subordinated to the fractional power (—A)” (see [10,
p. 298]). Also, we note that condition 1.2(i) implies the relation BT(t)x = T'(t)Bx, x € D(B).

2. Quasi-Inversion Method

Let € > 0 and 1 > 0. Introduce into consideration the function v(et, nt) = T'(et)uq(nt), where uq(t)
is a solution of the problem (1.1), (1.2), such that for o = 1, it satisfies the problem

W — cAv(et,nt) + nBu(et,qt), t >0, (2.1)
limv(et, nt) = ug, uop € D(A). (2.2)
t—0

Problem (2.1), (2.2) contains the generator of the semigroup eA perturbed by the unbounded
operator nB. Let us show that if Condition 1.1 holds, then this problem has a solution. Moreover,
its uniqueness can be proved, but since we are finally interested in the solvability of problem (1.1),
(1.2), and, as was said, there is no uniqueness for it, we do not dwell on the proof of the uniqueness
of solution to problem (2.1), (2.2).

In semigroup theory [6, 7, 10, 11], it is shown that problem (2.1), (2.2) is equivalent to the integral
equation

¢

w(et, ) — T(et)uo + 1 / BT(e(t — $))u(es, ns) ds, (2.3)
0
which we solve using the method of successive approximations setting

volet,nt) =0, vi(et,nt) = T(et)uo; (2.4)

t

Uny1(et, nt) = T(et)ug + n/BT (t —s))vp(es,ns)ds, n € N. (2.5)
0



Using inequalities (1.3) and (1.4), let us estimate the norm of the differences:

lvi(et, nt) — volet, nt)|| < My e“4*[luol;
t

M26€WA<t_S) €waS My Man 1=y _ewat
|va(et, nt) —viet,nt)|| <n WMW [[uoll ds = e e“ 4 |luo l;
¢ (2.6)
M2eewA(t—s) M1M277 B
les(et,nt) —valet )| < | ==a— gy a® e luoll ds
M M2T(1 — y)n? il
=g T ol
Taking into account (2.6), by induction, we obtain
M Mnrn 1 e a
ot 1) = et )| € === W)(Em D st {11 (1) |
MMET™(1 — )
= iy e ol meN. (2.7)
Hence the series
[e @]
> (valet, nt) — vn_1(et, nt))
n=1

uniformly converges in any interval of [0,]. Therefore, v(et,nt) uniformly converges to the function
v(et, nt), on the same interval, which is continuous on [0,[] and satisfies the integral equation (2.3).
By (2.7), the following estimate holds for it:

|v(et, nt)|| Z v (et, nt) — vn_1(et, nt)||

0

Man ' Fn_l( ) 77n_1 (n—1)(1—7) jew 4t
P t e Juo|
— =D D((n — 1)(1 =) +1)

1
My, (# t) ol 2.9)

ok
where I, ,(z Z m is a Mittag-LefHer-type function.

Taking into account the asymptotic behavior of a Mittag-Leffler -type function for 0 < p < 2 (see,
e.g., [8, p. 43))

1 - 1 1
B, (z :—z<1_p>/“exp 2y ++O<—>, z€eR, z— +oo,
1o(2) [ ( ) ; T(p— 1j) 27 |2+

from (2.8), we obtain the following estimate for the function v(et, nt):
lo(et, mt)l| < Mo exp (we?/ O~ =Dt 4 cwat)[fuoll, w = (MI(1 =)= (2.9)

Forn>t, e =¢/n, and € > 0, let us introduce into consideration one more function

w T(%(n—t))v(%t, nt). (2.10)



From relations (2.4) and (2.5), it follows that

wi () = T(%(n - t)>v1 <%t mﬁ) — T()uo;

wa (e, 7t) = T(%(n—t)>vg<%t,m> _
T(%(U—t))( ( >uo+770/tBT< (t —s) >T<%s>uods> — T(e)uo + nt BT(=)uo; ...

nt
Wny1(e,nt) = T(e)uo + /Bwn(e,T) dr, neN.
0
Therefore, the function w defined by (2.10) continuously depends on € and nt, i.e., w = w(e, nt),
and can be defined for n > 0. Let us preserve the same notation for the extended function. Since
the function v(et, nt) is a solution of problem (2.1), (2.2), it follows that w(s,nt) is a solution of the
problem

% =nBw(e,nt), t>0, (2.11)
%i_r)réw(e, nt) = T(e)ug, wuo € D(A), (2.12)
and for t = s/n and s > 0, by (2.9), it satisfies the estimate
cs =\ /=1
lw(z, )| < Mies™ es/n? HU(U_ 3) || < MoM;exp ( (772) s +€wA> HuoH (2.13)

As a result of the arguments carried out, we arrive at the following theorem.

Theorem 2.1. Let a« = 1, £ > 0, and ug € D(A), and let Conditions 1.1 and 1.2 hold. Then the

Sfunction
- (3-8 i)

u'(t) = Bu(t), 0<t<b, (2.14)
hr% u(t) = T()uo, (2.15)

is a solulion of the problem

and, moreover,
2\
|U(t)|| < MoM;exp <w<b—2> t+€wA>||uo||.

Remark 2.1. The theorem on the solvability of problem (2.14), (2.15) is also proved in [3] for a
certain class of variable operators B = B(t) if, in inequalities (1.3) and (1.4), the constant satisfies
wa = 0.

Now let us pass to the case 0 < o < 1. In what follows, we use the function (see |7, p. 357])

o+i00
1
— exp (tz — 72%) dz, t>0,
Jra(t) = < 2mi / b ) (2.16)
a—10
0, t <0,

where ¢ > 0, 7 > 0, 0 < o < 1, and the branch of the function z% is chosen such that Re z® > 0 for
Rez > 0. This function is an univalent function on the complex z-plane with cut along the negative
part of the real line. The convergence of integral (2.16) is ensured by the factor exp(—72").



Let us mention some properties of the function f-,(t), which are also proved in |7, Propositions
1-3, pp. 358-361].
If, in the integral defining the function f;,(f), we pass from the integration over the line Rez =
o > 0 to the contour consisting of two rays z = rexp(—if) and z = rexp(if), where 0 < r < oo,
7/2 < 0 < 7, then for ¢ > 0, the following representation is obtained for the function f; o (%):
[e @]
1
fra(t) == /exp (trcos@ — 77 cosab) sin (tr sin@ — 7r* sinad + 6) dr. (2.17)
s
0
The function fr,(t) is nonnegative, and the following relation holds:

exp (—7A%) = /exp(—At)fT,a(t) dt, 7>0, A>0, 0<a<l. (2.18)
0

Also, we note that for ¢ > 0, the function f;,(t) can be expressed through the Wright-type function
(see [13, Chapter 1)):
z

,—1.1,0 — 0 _ o
fral®) =Tlen(=rt) @50 = D o aTe AR

where o > max{0; 5}, u, 2 € C. For the Wright-type function, the following estimate holds (see [13,
Lemma 1.2.7]):

k

(2.19)

eig(—w) < m(l + :E”) exp ( - p:vl/(l_o‘)), (2.20)

neN, n2 ,
1 —«

Theorem 2.2. let 0 < a < 1,2>0,n>0, u, € D(A), and let Conditions 1.1 and 1.2 hold. Then
the function

p=010-a)a0=% x>0

0

e (t) = / Fra(tyw(e, n7) dr, (2.21)
0

where fr o (1) is defined by relation (2.16) and w(e,n7) is defined by relation (2.10), is a solution of
the problem

D%u(t) = nBu(t), t>0, (2.22)
lim 1 =) = T(e)ug. (2.23)

Proof. Note that the convergence of the integral in (2.21) (after the change nt = s) is ensured by
estimates (2.13) and (2.20).

d
Let us obtain the necessary expressions for I'™%u. (), D%u,(t) = —I'"%u, (1), and Bu, ,(t).

dt
Using (2.16), we have

00 o410
1
)~ 1 [ (% / eXp“Z‘”a)dz>w(€’m) "

0

o—100

0 o1+i00
jl—a/ <2im / exp(ﬁ—pﬁo‘)d£> = w(e,mpt™) dp
0

01—100

9}

1
- p(ll_a) / foa(1) 0/(1 —5)7 s w(e, nps*t™) ds dp. (2.24)
0



In (2.24), let us pass to the limit as ¢ — 0. Taking into account (2.12), we obtain

0 1
%g%ll g (1) /fp7 /1—3 —s*~LdsdpT(=)ug
0
] [e'e] o1+i00
0) [ o) dpT (o - / o [ enle— s dedp T
0 01—100
I‘ o1tico
— 2(;;) / e € dE T()ug = T(&)uo,

and the fulfillment of the initial condition (2.23) is proved.
Furthermore, let us calculate D%u.,(t). Analogously to (2.24), we have

(6% d [e%
Duay(t) = 21 e (1) =

1
1—a

oo 1
dio/o/ B0 f o (ts) (1 — 8) " w (e, qr) dsdr.  (2.25)

Finally, taking into account (2.11), we find that

Bug,(t) /fTa tyBw(e,n7)dr = /fTa w(e,nT) dr =

ol / (E fT,a(t)>w(g, 0 dr. (2.26)

~ (5 frattrutem) L

Using representation (2.17), let us calculate the summands standing outside the integral in (2.26).
Setting 6 = 7, we obtain

0

1
= lim — —&t — 7Y in(TE si — 0. 2.2
Tll}nJrfTa() Tlg&ﬂ/exp( &t — 7% cosa) sin(7EY sinwa) d€ = 0 (2.27)
0
Setting # = 7/2, we have
. 1 o T a g, T B
TEIEOO Jra(t) = TETOOE /exp ( — 7EY cos 5 ) cos <£t — 7&%sin 5 >d£ =0. (2.28)

0

Therefore, from (2.26)—(2.28), we deduce that

NBuz (1) = — 7 (% fﬂa(t)>w(€, nT)dr, (2.29)
0

and, as follows from (2.25) and (2.29), to prove the theorem, it remains to verify the fulfillment of the
relation

1 d

1
T —a) d_/ (1—s)7t'" “ fralts) d3+ fTa( ) =0. (2.30)
0



Expressing the function fr,(t) through the Wright-type function by formula (2.18) and calculating
the obtained integrals, we have

1

1
d 1—
5, 1_ - - T, 7,0
1_ad/ 7 fralts) ds o f (1)
0

1
— —r(11—a) % /(1 — )7t (ts) teya (- T(ts)_o‘> ds + %( eyt (—Tt™)
0
1
1 d TN ( (ts)_o‘) > Tk
F(1-a)%/(1_3) 10 () 1kzr(k+1) T(—a erFk;Jrl (—ak)
0
d < (=Tt )" N A e
ot ZO Tk+ 1)1 —a—ak) S T(k +1)T(-ak)

k
(k+ D(=p)ke®D-1 Z (o 1) (=g)m ottt

r k+1)F(1—a—ak) = D(m+2)I(—a—am)

\
p'qg

) t= alk+1)— > ( T) t—a(m+1)—1
Uk + 1) I(~a— ak) mz:OFerl —a—am)

k=0
Hence the function w.,(t) satisfies Eq. (2.22).
Corollary 2.1. The function u.(t) = lirq Uz y(t) satisfies problem (2.22), (2.23) written for the pa-
n—

rameter volue n = 1.

Example 2.1. As was already noted after Condition 1.2, the operator B in problem (2.22), (2.23)
can be a fractional power of the strongly positive operator 4, i.e., B =(—A)7, 0 <y < 1.

Let us present one more example taken from [2].

Example 2.2. Let £ = Ly(R™). On the set D(A4) = W2™(R"), let us define the operator A as
follows:

aler +pnu(t LE)
a
p pl e am%" ?
lp|=2m

where, for any z, £ € R?,
Y (@) = (1) Mole™,
lpl=2m

and the coefficients ap(z) for |p| = 2m satisfy the uniform Hélder condition in R™.
Define the operator B on D(B) = W2 Y(R") > D(A) by the relation

Bu(t, m) _ Z ap(m)ap1+ +pnu t, :E / Z b 8P1+"~+p"u(t,£) .

8mp1~~8:v aplouapn
lp|<2m—1 1 lp|<2m—1 61 G

where @ C R”; the coefficients a,(x) for [p| < 2m — 1 are continuous and bounded in x € R"; the
coefficients by(z, ) are continuous and

[ [t e agio < o
R Q



As was noted in [2]|, the operators A and B satisfy Conditions 1.1 and 1.2 for w4 = 0 and for a
certain v € (0,1). If up(z) € WZ™(R") and o < 1, then, by Theorem 2.2, problem (2.22), (2.23)
(Cauchy-type problem for the integro-differential equation) has a solution.

In conclusion, let us present the corresponding results for the Cauchy problem with Caputo fractional
derivative 0%u(t) = D* (u(t) — u(0)).

Theorem 2.3. Let u(t) be a solution of problem (2.22), (2.23). Then the function U(t) = I'~%u(t)
is a solulion of the problem

O°U(t) = nBU(t), t>0, (2.31)
P_I)I(l) U(t) =T(=)up. (2.32)

Proof. The fulfillment of the initial condition (2.32) is obvious. Let us verify that the function U ()
satisfies Eq. (2.31). We have

0*U(t) = D*(U(1) = U(0)) = DU(t) — 11(1;_0404)T(6)u0
T I 1_ a) % /(t —8)"U(s)ds — F(f;_aa)T(g)uO
0
—1 d t d —a ™
_ (1—a)I(1 — a)% / %(t — 3)1 U(s)ds — T = a)T(e)uo
0

Corollary 2.2. Let the conditions of Theorem 2.2 hold. Then the funclion
Uealt) = [ gratyote,nr) dr
0

where gra(t) = '™ fr o(1) = t‘o‘eii_a(—ﬂf_o‘), is a solution of problem (2.31), (2.32).
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