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The steady motion of a uniformly heated spherical aerosol particle in a viscous gaseous medium is 
analyzed in the Stokes approximation under the condition that the mean temperature of the particle 
surface can be substantially different from the ambient temperature. A n analytical expression for the 
drag force and the velocity of gravity-induced motion of the uniformly heated spherical solid particle 
is derived with allowance for temperature dependences of the gaseous medium density, viscosity, 
and thermal conductivity. It is numerically demonstrated that heating of the particle surface has a 
significant effect on the drag and velocity of gravity-induced motion.
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Introduction . Knowing the force of medium resistance to particle motion is necessary in solving many 
scientific and engineering problems, e.g., in designing experimental facilities where directed motion of particles 
has to be ensured, in developing methods of fine cleaning of gases from aerosol particles, in analyzing particle 
precipitation in plane-parallel channels with different temperatures, and in solving numerous problems related to 
cleaning of industrial wastes from aerosol particles. It is known th a t the drag force can be substantially changed 
by deliberate heating of the particle, for instance, in the laser radiation field in the case of clearing of clouds and 
fogs, in combustion of particles in chemically active media, and in particle transfer in photoprecipitators where the 
particle motion occurs under conditions of substantial relative differences in tem perature. The relative difference 
in tem perature is understood as the difference between the particle surface tem perature and the tem perature of 
the medium far from the particle. The relative difference in tem perature is assumed to be small if the inequality 
(Tes  — Teoo)/T eoo <C 1 holds and to be large if (Tes  — Teoo)/T eoo ~  0(1) (Tes  is the mean tem perature of the 
particle surface and Teoo is the tem perature of the gaseous medium far from the particle). The heated surface of 
the aerosol particle exerts a significant effect on thermophysical characteristics of the ambient gaseous medium and, 
as a consequence, on the magnitude of the drag force.

The problem of the drag force acting on a heated spherical solid particle was first solved in [1], though the 
results obtained there cannot be used for large differences in tem perature because of the inappropriate choice of the 
method used to solve gas-dynamic equations. Moreover, Kassoy et al. [1] considered only the linear dependence of 
thermal conductivity and dynamic viscosity on temperature.

For viscosity, thermal conductivity, and diffusion described by power functions [2], an analytical solution of 
the problem of the drag force acting on a heated spherical particle was derived in [3-6]; results obtained in these 
papers allow the estimates to be made at large differences in tem perature.

Sometimes solving problems with nonisothermal flows additionally involved the allowance for the so-called 
B arnett tem perature stresses [7]; for example, the problem of the flow around a strongly heated sphere was solved 
numerically in [8] and analytically in [9]. The Barnett stresses can produce a significant effect on the motion of 
particles at Mach numbers M —> 0 [8]. In the present paper, the motion of particles is considered for rather low
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Knudsen numbers and not too low Mach numbers, where the tem perature stresses may be neglected even for relative 
differences in tem perature ol the order ol unity. It should be noted th a t the solutions ol differential equations that 
describe the velocity and pressure fields in the form of power series, which are obtained by the method reducing the 
problem dimension, are rather cumbersome. In the present work, the solution of gas-dynamic equations is found in 
the form of generalized power series, which substantially simplifies the calculations.

1. Form ulation o f th e  P roblem . We consider a gaseous flow around a uniformly heated spherical aerosol 
particle with substantial differences in tem perature in the vicinity of the particle.

The particle can be heated to high temperatures, for instance, in the field of laser radiation. The tem perature 
distribution over the particle surface is close to uniform if the thermal conductivity of the particle is much higher 
than the thermal conductivity of the gas or if the radiation wavelength is substantially greater than the particle 
radius [10].

In analyzing the flow around the aerosol particle, we assume tha t all processes are quasi-stationary because of 
the small time of thermal relaxation of the gas-particle system. The particle motion occurs at Peclet and Reynolds 
numbers much smaller than unity. As (Tes  — Teoo) /T eoo ~  0(1), we have to take into account the tem perature 
dependence of viscosity and thermal conductivity of the gaseous medium. In the present work, we use the power 
dependences [2]

Me =  Meoo(Te/Teoo)/3, Ae =  Aeoo (Te/T eoo)“ , 0.5 < « < 1 .0 ,  0.5 <  /3 <  1.0,

where p eoo =  p e(Teoc), Aeoo =  Ae(Teoo), p e and Ae are the dynamic viscosity and thermal conductivity of the 
gaseous medium, respectively, and Te is the gas tem perature. The particle is assumed to be uniform in terms of 
its composition and large (Knudsen number Kn =  A/i? <C 0.01, where A is the mean free path of gas molecules), 
and there are no phase transitions on the particle surface. The particle radius is rather small, and the influence of 
gravity-induced convection on the tem perature distribution may be neglected.

Under the assumptions made, the equations and boundary conditions for velocity Ue, pressure Pe, and 
tem perature Te in the Stokes approximations have the following form [11, 12]:

dPe _  d
dxk dxj

f d u i  , a v J 2 , d u ;
< L 1 >

div (AeVTe) =  0;

r = R, U? = 0, Ueg = 0, Te = TeS; (1.2)

T  ̂ OO, Ue  ̂ Uoo^r COS 0 Uqq&q sin Te  ̂Teoo, Pe  ̂Peoo • (1 *3)

Here I l f  and Ug are the radial and tangential components of the mass velocity of the gas in a spherical coordinate 
system Ue, pe is the density of the gaseous medium, Uoo =  \Uoo\ (C/qo is the free-stream velocity determined from 
the condition of vanishing of the total force acting on the particle), er and eg are the unit vectors of the spherical 
coordinate system, and f  is the vector of the gravity force (C/qo and | f  (ms)| are related so tha t the total force 
acting on the particle equals zero).

The no-slip conditions for the normal and tangential components of mass velocity and the condition of a 
constant tem perature are set on the particle surface. Conditions (1.3) are used as the boundary conditions at 
infinity, i.e., far from the particle. Hereinafter, the index e refers to  the gas, and the index oo refers to physical 
quantities characterizing the ambient medium in the undisturbed flow.

2. V elocity  and T em perature F ields. V elocity  o f  G ravity-Induced Falling o f th e  P article. To 
determine the force acting on a uniformly heated aerosol particle and the velocity of its gravity-induced falling, we 
have to find the distributions of tem perature, velocity, and pressure in the vicinity of this particle. The general 
solution of the heat-conduction equation, which satisfies the corresponding boundary conditions, has the form

t e(y, 0) = t e0(y) =  (1 +  Y0/ y ) 1/{1+a\  (2 .1 )

where t e = Te/T eoc , y = r / R  is the dimensionless radial coordinate, To =  — 1 is a dimensionless parameter
characterizing the difference in tem perature between the particle surface and the medium far from the particle, and 
t s  = Tes / T eoo. W ith allowance for Eq. (2.1), we obtain



Me =  Moo(l +  r  o /y)/3/(1+“ ). (2 .2)

In what follows, relation (2.2) is used to find the velocity and pressure fields in the vicinity of the particle.
The form of the boundary conditions (1.2), (1.3) allows us to separate the variables in solving gas-dynamic 

equations. The velocity and pressure components are found in the form

Ur(y,6) = U00G(y)cos6, Ug{y, 6) = -Uoog(y) s in 6», Pe(y, 6) = Peoo + h(y) cos0, (2.3)

where G(r), g(r), and h(r) are arbitrary functions depending on the radial coordinate r. Substituting Eqs. (2.2) 
and (2.3) into the Navier-Stokes equation and separating the variables, we obtain the relation

+  -  (4 +  71*) -  4  (4 +  ^  ~  73*2) ^ - 4 ( 2 -  =  “ T T -  (2-4)dy6 y dyz y z dy y6
where

1 - / 3  0 1 +  /? 2 + 2a — (3 n  t To
7i =  t — , 72 =  2 — — , 73 =  . ,2 , D  =  const, i ( y )  = .

l + a  l + a  (1 +  a.y y +  Io
We seek for the solution of Eq. (2.4) in the form of a generalized power series [13, 14]. First we find the 

solution of the homogeneous equation (2.4):

^  + -  (4 +  71*) \  (4 +  72* -  73*2) ^  ^  (2 -  =  °- (2-5)dy V dyz y z dy y%i
For the homogeneous equation (2.5), the point y = 0 is a regular singular point [13]. The solution of this equation 
is sought in the form

OO

G = y » Y , ° o  ±  (2-6)
n =  0

Substituting Eq. (2.6) into Eq. (2.5), we obtain the governing equation p(p + 3)(p — 2) = 0 whose roots are p\ = —3, 
/33 =  0, and p2 = 2. The following solution corresponds to the greatest root:

OO

Gi =  ^ ^ C 7 W r ,  <#> =  1 .
y  n = 0

The second solution of the homogeneous equation (2.5), which satisfies the condition of finiteness for y —>■ oo, and 
the particular solution of Eq. (2.4) are found in the form

OO 1 OO 1 oo oo

G3 = E  C n ) r  + In y  -3 E  C n ) l ^  = - E  C n )£n + ^  ln  ̂E  C n ) £ n -
n = 0  y  n = 0  y  n = 0  y  n = 0

The expressions for the coefficients CrP (n ^  1), CrP (n ^  3), and CrP (n ^  4) found by the method of 
undetermined coefficients have the form

= n (n  +  3)(n +  5) { [(n “  1)(3n2 +  13n +  8) +  71 (n +  2)(n +  3) +  72 (n +  2)]C7” - 1

-  [(n -  1 )(n -  2)(3n +  5) +  271 (n2 -  4) +  7 2(n -  2) +  73(n + 3) \C ^ l2c

+ ( n -  2)[(n -  1 )(n -  3) +  71 (n -  3) +  7 3]Cr̂ 3},

C:' ] =  ( , , +  l)(„  +  3 ) ( „ - 2) ( [(" “  1)(3"2 +  " -  6> +  H

-  [73(« +  1) +  (n -  l) (n  -  2)(3n -  1) +  27in (n  -  2) +  7 2(n -  2)]C^j)2

+  (n -  2)[(n -  l) (n  -  3) +  73 +  71 (« -  3)]C^ 3

n —2

+  ^  (̂w- — k — 1) j ( 3 £;2 +  16/c +  15)C^ — [(A: — 1)(6/c +  13) +  7 1 (2k +  5) +  72] ^ —!
0 k = 0

+  [3(k -  l ) (k  -  2) +  271 (A; -  2) +  73]Cv^2} _  6(_ l ) " n |(Wo°^ n ^i)>



C P  =  _ 3) ( ( »  -  1)(3»2 -  5»  -  4 +  7 , »  +  72)c £ ,

-  [(n -  1 )(n -  2)(3n -  4) +  271 (n -  1 )(n -  2) +  72 (n -  2) +  n 73]C^ 2

n—3
+  (n -  2)[(n -  l) (n  -  3) +  71 («■ -  3) +  73]C^ 3  +  ^  “  k ~  2)(n  “  k ~  !)

0 k = 0

x {(3k 2 +  16* +  1 5 ) c f } -  [(* — 1)(6A +  13) +  7 l (2k +  5) +  72] ^  +  [3(k -  1) (k -  2) +  2-n (k -  2) +  73]c£_}2 } ) .

In calculating the coefficients C „ \  C „ \  and CrP by recurrent formulas, one has to take into account tha t

c£ 1} =  l, C f } =  l, c f } = 0, O f } =  73/ 4, c f>  =  1 ,

co3/(2T 30) = - 73(10 +  371 +  72)/60, C'P = 1, C f } =  1,

^ 2/T 2 =  [(271 +  72 +  6w0)(4 +  371 +  72)/4 +  373 +  3w0(w0 -  1)]/15,

C f -1 =  -(2 7 1  +  72 +  6w0) / 8, =  (3/(1 + a).

The function g(y) in the expression for Ug is related to the function G(y) by the functional relation

M  =  G M  + i  y -  f G M )  ( f  = - L ^  = -  , * ) ,
yyy j  2 dy yy>)  V  t e0 dy y (  1 +  a ) ) ’

which follows from the continuity equation [second expression in Eqs. (1.1)] with allowance for the tem perature 
dependence of the gaseous medium density (pe = l / t eo)-

Thus, we obtain the expressions for the velocity components

U!/ = Uoo cos 9 (A \G \  +  A 2G2 +  G3) ; (2-7)

= - U 00s m d ( A 1G4 + A 2G5 + G6), (2.8)

where

G 4 = ( 1 + 2 ( i T ^ ) Gl + l yG '1’ G S =  ( 1 + 2(T T ~a))G2 + l yG '2’

I  \  „  1
Ge>= 1

2(1 + a )

G[, G2, and G3 are the first derivatives of the functions G 1 , G2 , and G3 with respect to y.
The constants of integration A \  and A 2 are determined by substituting expressions (2.7) and (2.8) into the 

corresponding boundary conditions on the particle surface. The force acting on the particle is found by integrating 
the stress tensor over the particle surface [12]:

F J ( —Pe cos 9 +  arr cos 9 — arg sin 9)r2 sin 9 d,9 dip n z .

Here arr = 2/xe dU ^/dr  and arg = /i,e(d U g /d r+ ( l / r )  dU!f /89  — Ug/r) are the components of the stress tensor in the 
spherical coordinate system [12], and n z is the unit vector directed along the Oz axis in the Cartesian coordinate 
system.

Based on the relations discussed above, we obtain

Ffj, = &-KRne0ofv,U00n z , (2.9)

where / M =  2N2/ (3 N 1), N x = G \G ’2 -  G2G[, and N 2 = GiG'3 -  G3G[.
y=i y=l



f a  h b

Fig. 1. Dependences of /* (a) and h (b) on the mean surface temperature T£s for Teoo =  0 C, 
Pe = 1 atm, and a = /3 = 0.5 (1), a = /3 = 0.7 (2), and a = /3 = 1.0 (3).

A spherical particle falling in a viscous medium under the action of the gravity force starts moving with a 
constant velocity at which the action of the gravity force is balanced by hydrodynamic forces. W ith allowance for 
the buoyancy force, the gravity force acting on the particle is

F  = {pP -  Pe)g(/±/'Z)'KR3'n z (2.10)

(g is the acceleration due to the gravity force; the subscript p  refers to the particle).
Equating expressions (2.9) and (2.10), we obtain the expression for the velocity of gravity-induced motion 

of a uniformly heated spherical particle (an analog of the Stokes formula):

Ue = h ^ n z, h„ = I r 2 g. (2.11)
^ Me o o jf j,

Thus, relations (2.9) and (2.11) allow us to estimate the force acting on a uniformly heated sphere and the 
velocity of gravity-induced motion of this sphere with allowance for the tem perature dependences of the gaseous 
medium density, viscosity, and thermal conductivity with arbitrary differences in tem perature between the particle 
surface and the ambient medium far from the particle.

If the particle-surface heating is rather low, i.e., the mean tem perature of the particle surface differs in­
significantly from the ambient tem perature far from the particle (( —*■ 0), the tem perature dependences of density, 
viscosity, and thermal conductivity may be neglected. Then, we have G\ = 1, G'x =  —3, G^ =  1, G'2 = — 1, G3 =  1, 
G'3 = 0, N 1 = 2, and N 2 = 3. In this case, relations (2.9) and (2.11) transform to the known Stokes equations for a 
sphere [1 1 ].

Figure 1 shows the dependences of f* = / M/ / M\t^  and h = h ^ /h f ^ T ^  on the mean surface tem perature Tes 
for an alumina particle of radius R = 5 yitm moving in air at Teoo =  0°G and Pe = 1 atm. It is seen tha t particle- 
surface heating produces a significant effect on the velocity of its gravity-induced motion and on the drag force of 
the ambient medium. The theoretical conclusions are supported by experimental data (see, e.g., [15]).

Thus, with allowance for the tem perature dependences of the density, viscosity, and thermal conductivity of 
a gaseous medium, expressions are derived, which generalize the Stokes formula to the case of steady motion of a 
uniformly heated spherical solid particle in a nonisothermal gaseous medium in the field of the gravity force with 
arbitrary differences in tem perature between the particle surface and the ambient medium far from the particle.
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