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SYSTEMS ANALYSIS

HOPF BIFURCATION IN COASTAL

ECOGEOSYSTEMS

I. T. Selezov,
1

Iu. G. Kryvonos,
2

and V. M. Moskovkin
3

UDC 532.59

Abstract. The qualitative theory of differential equations (catastrophe theory) is used to analyze the

optimal preservation of the ecological state of an object. As the object, we consider a seacoast that

is subject to permanent destruction by waves and is fed to maintain its initial state. We model

the maintenance of the equilibrium state of ecological system in some optimal mode. Unlike the

well-known approaches, such model takes into account essentially nonlinear effects and control by

means of beach feed, which can be interpreted as feedback. The analysis is carried out

by the methods from stability theory. Characteristics of the limit cycle are obtained and its stability

is analyzed.

Keywords: Hopf bifurcation, ecogeosystem, stability, catastrophe theory.

INTRODUCTION

Finding optimal decisions to preserve ecological equilibrium of structures is a complicated multiparameter

problem. In actual practice, ecological equilibrium is unstable; moreover, it worsens.

Any beach, natural or artificial, is supposed to keep the equilibrium if it is considered for the time interval of

several years. In geological time, coastal zone cannot remain invariable. Some of them are never in equilibrium state.

Equilibrium coast is such that do not vary noticeably within one or two decades.

Breakwaters are intended not only to soften the impact of storm waves on coast, but also to “retain” beach pebble

on a certain area. Beaches need correct maintenance and annual supplement since 5 to 12% of pebble per year are

abraded and washed off by waves in spite of the fact that solid volcanic rock is put on the shore. If it is not supplemented

regularly, then water will come close to coastal retaining walls and waves, splitting upon them, will considerably deepen

the bottom. It will be impossible to reconstruct such a beach.

The problem of rearrangement of sea near-shore under abrasion and sedimentation of deposits has been important

for a long time [1–10].

A determining feature for generation of coastal current and transport of deposits, and hence of coast erosion, is the

beginning of wave breaking and successive damping of wave heights propagating through inshore. For example, it is

shown in [11, 12] that surging breaker and field of turbulence velocities have dominating influence on processes

in coastal zone such as wave damping, flows of mass and impulse, currents, and sediment transport. On small water,

breakers interact with seabed plants and sediments.

The coast evolution forecast was also analyzed in [13]. In case of frontal wave run-up (cliff), the equilibrium

profile varies substantially [14].
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In the present paper, we will use the qualitative theory of differential equations to analyze the ecological

equilibrium control of coast subject to sustainable influence of sea waves leading to their slow or fast fracture. We will

apply the integral model in the form of strongly nonlinear coupled system of two differential equations, which takes into

account the volume of fragmentary material, height of coastal cliff, material’s inflow and ablation, and transport of

sediments. We will analyze singular points, bifurcation set, Lyapunov stability criteria, and limit cycle characteristics.

(The corresponding report was presented at Lyapunov’s readings in Kharkov [15].)

The approach developed in the present study is applicable for the analysis of “back–forward” scenario. If the

previous ecological state, for example 50–100 years ago, is known as well as today’s state, then it is possible to estimate

its evolution proceeding from the estimate of oscillation period for specific parameters.

PROBLEM STATEMENT

Consider linear equation of balance of fragmentary material in coastal zone of an abrasion shore [16], where

biogenic production of this material is additionally taken into account and the coefficient of its abradability due to wave

impact linearly depends on the biomass of seabed biocenose:

dW

dt
aH W W C B B C W U Bm� � � � � �� �( ) [ ( – / )]

max min0

1 , (1)

dB

dt
k B B B k W� �
1 2

1( – / )

max

, (2)

where k k
1 2

0, � �const .

The following notation is accepted in formulas (1) and (2): t is time, year;W is the volume of fragmentary material

per unit of shore line length, m

3

/m ( )0 � �W Wm ;Wm is limiting (minimum) volume of fragmentary material at the beach

at which abrasion stops; a is the share of fragmentary beach-forming material (not suspension-forming fractions) in the

rocks that compose the coast ( )0 1� �a ; H is the height of coastal cliff, m; � ( )W Wm � is the velocity of coastal cliff

retreat, m/year; � � �const 01. , m year

� �1 1

; B is the biomass of seabed biocenosis per unit width of abrasion shoal, ton/m

( )

max

0 � �B B ;U is the intensity of inflow ( )U � 0 or ablation ( )U � 0 of the material due to natural (transport of deposits

by currents) or artificial (filling, withdrawal) factors, m

2

/year; � is the coefficient of biogenic production of fragmentary

material, m

3

/(ton per year) (amount of the material obtained from one ton of the zoobenthos biomass per year),

C C
0

0,

min

� �const , year

�1

; k C B B C� �
0

1( – / )

max min

is the coefficient of abradability of the material, year

�1

(linear

approximation between its two characteristic values: k B k C C( )

max min

� � � �0

0

and k B B k C( )

max min min

� � � .

Equation (2) is based on ecological and lithodynamic features of the process under study: self-adaptive growth of

biomass, well-known in ecology and described by the Verhulst equation (for k
2

0� ) and decrease in the biomass

increment as the amount of the fragmentary material in the coastal zone that promotes biocenosis degradation grows.

The model described by Eqs. (1) and (2) can be considered as the asymptotic approximation following from

hydrodynamic equations [17].

ANALYSIS OF THE EQUATIONS. PROBLEM SOLUTION

Passing to the dimensionless variables � �t k t
1

, � �B B B/ ,

max

and � �W W Wm/ , we obtain the nonlinear dynamic

system of second order

dW

dt
W BW B

dB

dt
B B W

�

�

� � � � � � � �

�

�

� � � � � �

� � � �

�

1 2 5 3

4

1

,

( ) ,

(3)

where

� �
1 1 0

1 0� � � �( / )( )

min

k aH C C , �
2 0 1

0� �C k/ ,
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� �
3 1 1

4 0� � �( / ) ( / )aH k k Wm , �
4 2 1

0� �k W k Bm / ( )

max

,

� �
5 1

0� �B W kmmax

/ ( ).

The coordinates of singular points of system (3) can be found from the relations

� � � � �

� � � � � �

	 	 	

	 	 	

W B B

B W W

( ) / ,

( ) / ( ),

1

4

1 3 5 2

�

� � � �
(4)

where

0 4 0 1 4 1

1 3 4 2 4

� � � � � � � �

	 	

B W( ) / , / ( )� � � � � ,

0 1

3 1 3 1 2 1 2

� � � � � � �

	

� � � � � � �/ / ( ) ,W .

Applying the parameters of system (3), we find the values of �

	

W from the solution of the cubic equation

( ) ( )

[ ( )] [

� � �

� �

� �

�

	 	 	

W W W
3 2

2 4 5 1 1 2

2

2

4

4 5 1

2� � � � � �

� �

� � � �
5 3 2 1

2

2

4

2� �

�

� � �

� �

( )]

� � �

� �

3

2

3 5

2

2

4

0

�

� . (5)

The matrix of the linearized system (3) has the form

~

A
B W

B
�

� � � � �

� � �




�

�



�

�

	 	

	

� � � �

�

1 2 2 5

4

1 2

. (6)

The condition det

~

A � 0 can be used to find the bifurcation set for saddle-type points (boundary of the saddles) [18, 19].

To find the Hopf bifurcation, we equate the trace of matrix (6) to zero:

tr

~

A B B� � � � � � �

	 	

1 2 0

1 2

� � ,

whence

0 1 2 0 1

1 2 2 1

� � � � � � � �

	

B ( ) / ( ),� � � � , (7)

det

~ ( ) ( ) ( ) ( )

( )

A �

� � � � � �

�

� � � � � � � � �

�

2 1 1 2 2 2 0 5 2

2

2

2

4 1 2 2

2

, (8)

� �
� � � � �

� � � �
0 4

1 2 1 2 1

2 3 2 5

1 1 2

2 2

� �

� � � �

� � �

bif

( )( )( )

( )[ ( ) ( )]�
1

1�

. (9)

Relation (9) (stability boundary of nodes and focal points [19]) is obtained from (4), (7).

Taking into account inequalities (7) and �
0

0� , we get

� � � � �
� �

�
3 2 5 1 3

1 5

2

2 1 0

1

2

0( ) ( )

( )

( )

� � � � � �

�

�

� ,

whence the inequality � � � �
2 3 1 5

0� � follows, which is useful for the further analysis.

For the Hopf bifurcation to exist, it is necessary that det

~

A � 0 and 0 1

2 1

� � �� � , which is equivalent to the

inequality

� � � � �

� �

� �

( )

( )

/

4 1 4

2 2

1

1

2

0 5

1 2

1 0 5

2 1

� � � �

� � �
� �

D
(10)

for � � �
2 0 5

2 0� � � and 0 1

2 1

� � �� � for � � �
2 0 5

2 0� � � (here also � �
0 5

1� ), where D � �(4

1

1

2

� �

� � � � � �1 4 16 2

0 5

2

1 0 5 1 0 5

� � � � � � � �) ( )( ).
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As the parameter �
5

increases beginning from zero (no inflow of biogenic material), curvilinear field (det

~

)A � 0

in the triangle 0 1

2 1

� � �� � gradually increases and covers it completely for � � �
2 0 5

2� � . The bifurcation happens

on the boundary bifurcation curve (9), which passes through the specified field of parameters �
1

and �
2

.

For the further mathematical analysis, we introduce the following notation: � �B x , � �W y, � �t t , � �

	 	

B x ,

� �

	 	

W y , � � �

	

x x x , � � �

	

y y y , and � � �� � �
0

� �
1 4

� bif . Then system (3) becomes

dx

dt
x x y x

dy

dt
y x

�

� � � � � � � �

�

� � � �

	

	

( ) ( ) ( ) ,

( ) (

1 2

0

2

2 5

� �

� � � � �
2 1 2

x y x y
	

� � � � �) .

(11)

In the notation from [20] we can write

X x y x x y x y x� � � � � �( , ) ( ( ) ( ) ( ) , ( ) (� � � � � � � � � � � ��

	 	

1 2

0

2

2 5 2 1 2

x y x y
	

� � � � �� �) ) ,

dX
x

y x
�

� �

� � � �
( , )

( )

0 0

1 2

0

2 5 2 1

�

� � �

� �




�

�



�

�

	

	 	

, dX
A

k A
0

0 0( , ) �

�

�




�

�



�

�

�
,

where

1 2

2

2

0

2 1

2

� �

�

�

� �

	

x A
� �

�
, � �

2 1

0x A
	

� � � � ,

� �
� � � �

� �

�
2 5

2 1 2 1

2

2

0

5

1 1

2

y k
	

� �

� � �

�

� �

( )( )

( )

for � � �0 0(

~

)tr A .

The determinant of matrix dX
0

0 0( , ) coincides with formula (8). The normalized Jacobi matrix becomes

dX
A

k A
0

0

0 0

1

1

( , )

/

/

�

�

�




�

�



�

�

�
.

The eigenvalues of the Jacobi matrix have the form

� � �
1 2

1 2 1 2

0

1

2

4

,

/ /

( det

~

) (det

~

)� � � � � � � �A i A i i ,

where det

~

A can be found from formulas (8) and (9).

The eigenvector of matrix dX
0

0 0( , ) for the eigenvalue � � �
1 0

� �i i can be found from the matrix equation

( ( , ) )dX I U
0 1 1

0 0 0� � �� , (12)

where I is unit matrix and U
1

is the eigenvector,

U
U

U
i
U

U
1

11

21

12

22

�




�

�



�

�

�




�

�



�

�

.

Equation (12) yields the eigenvector normalized so that its first nonzero component is one:

U e ie i
A

k
1 1 2

1

0

� � �




�

�



�

�

�

�

�




�

�



�

�

� �

/

/

�

�
, (13)

whence

X x e y e X x A y y y k
0 1 2 0

(
� �

) ( ( / ) ), ( / )� � � � � � � � � � �� �

and hence,

X x y x A y A k y x A y
0 0

2

( , ) (( ( / ) ) ( / ) ( ( / ) ))� � � � � � � � � � � �� � � � ,
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k x A y k Ay x A y k y(( ( / ) ) ( / ) ( ( / ) )( / ) )� � � � � � � � � �� � � � �
2

(14)

� � � � � � � � � �(( ( / ) ) ( / ) ( ( / ) ))x A y A k y x A y� � � �
0

2

,

kx kA y k x y� � � � � �( / )( ) ( / )� � � �
2

2 2

2

.

The expansion of X x y
0

( , )� � in the new basis has the form

~

( , )

~

( , )

/

/

( ,A x y B x y
A

k
X x y� �




�

�



�

�

� � �

�

�




�

�



�

�

� � �

1

0

0

�

�
),

whence

~

( , )

~

( , )( / ) ( ( / ) ( / ) (A x y B x y A x A y A k y� � � � � � � � � � � � �� � � �
0

x A y� �( / ) ))�
2

,

(15)

� � � � � � � � � �

~

( , )( / ) ( / )( ) ( / )B x y k kx kA y k x y� � � � �
2

2 2

2

.

System (15) yields

~

( , ) ( / ) ( / )( ) ( ) ( / )A x y kA y A x y x A� � � � � � � � � � �� � � � �
0

2

2

2 2

2 ( )( )1

2

2

� �� y .

(16)

In the new coordinate system the expression X x y
0

( , )� � becomes

X x y A x y B x y
0

( , ) (

~

( , ),

~

( , ))� � � � � � � ,

where

~

A and

~

B are defined by (15) and (16).

Let us show that � �
0

2 2

k A A� � � det

~

. This follows from the expressions for k and from formula (8) for

� �
3 5

� :

( ) ( ) ( ) ( )( ) (� � � � � � � � � � � �
2 1 1 2 2 2 2 1 2 1 2

4 1 2 1 1 2� � � � � � � � � �
1

2

) .

Thus, the initial expressions for calculating the stability criterion have the form

� � � � � � � � � � � � � �X A x y y A x y x A
~

( , ) ( / )( ) ( ) ( / ) (� � � � �2 1

2

2 2

2

)( )�y
2

,

(17)

X B x y x x y A y
1

2

2 2

2

� � � � � � � � � � �

~

( , ) ( / )( )� � � � .

The Jacobi matrix in the new basis becomes diagonal

dX
0

0 0

0

0

( , ) �

�




�

�



�

�

�

�
. (18)

The stability criterion according to [20] has the form

��� � �

� �

� �

� �

� �� �

�

�

� �

�

� �� �

V
X

x

X

x y

X

y

X

x y
( )0

3

4

2

2

2

2 2

2

2 2

�

�

�

� �

� �

� �

� �� �

�

� �

� �

�

� �




�

�

�



�

�

�

2

2

2 2

2

2 2

2

X

y

X

x y

X

y

X

y

, (19)

where V is bias function related to the Poincare mapping.

Substituting expressions (17) into formula (19) yields

��� � � � �V
A

a( ) ( ( / ) )( )0

3

4

1 2

3

2

2

2

2

�

�

� � � . (20)

Since the parameters A, �, and ( )2

2

2

2

� �� �a are positive, we obtain ��� �V ( )0 0; hence, the limit cycle is unstable [19].
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The approximate analytical characteristics of the limit cycle can be found according to the methodology developed

in [21]. In the notation of this study, the matrix

P
A

k
�




�

�



�

�

1

0

/

/

�

�

is obtained, where P U U� �( Im )Re

1 1

and U
1

is defined by formula (13), which introduces the linear transformation

�

�




�

�



�

�

�




�

�



�

�




�

�



�

�

� � � � � � �

x

y

A

k

x

y
x x

A
y y

k1

0

/

/

~

,

�

� � �

~

y ,

to within the sign (see (13) and (14)), coinciding with the change of variables obtained from the use of the previous

approach [20]. In the new variables, dynamic system (11) for � � 0 becomes

dx

dt
y A x y x A y

dy

~

~

( / )( )

~ ~ ~

( / ) ( )

~

,

~

� � � � � � �� � � � �2 1

2

2 2

2

2

dt
x x y A y� � �� � � �
~ ~~

( / )

~

.

2 2

2

(21)

The eigenmatrix of the linearized system (21) (Jacobi matrix) has the form (compare with matrix (18))

~

A
1

0

0

�

�


�

�



�

�

�

�
.

Use system (20) to write the initial functions corresponding to formulas (17) of the approach [20], necessary to

calculate the analytical characteristics of the limit cycle:

F x y y A x y x A y
1 2

2 2

2

2

2 1(

~

,

~

)

~

( / ) ( )

~ ~ ~

( / ) ( )

~

� � � � � � �� � � � � ,

(

~

,

~

)

~ ~~

( / )

~

.F x y x x y A y
2 2 2

2

� � �� � � �

(22)

According to [21], write the expressions for functions:

g
F

x

F

y

i
F

x

F

y
11

2

1

2

2

1

2

2

2

2

2

2

2

1

4

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�~ ~ ~ ~




�

�

�



�

�

�

,

g
F

x

F

y

F

x y
i

F

x

F

02

2

1

2

2

1

2

2

2

2

2

2

2

2

1

4

2�

�

�

�

�

�

�

�

� �

�

�

�

�

�

~ ~

~ ~

~

�

�

�

� �

�

�

�

�

�

�

�

�




�

�

�



�

�

�

~

~ ~

y

F

x y2

2

1

2 ,

g
F

x

F

y

F

x y
i

F

x

F

20

2

1

2

2

1

2

2

2

2

2

2

2

2

1

4

2�

�

�

�

�

�

�

�

� �

�

�

�

�

�

~ ~

~ ~

~

�

�

�

� �

�

�

�

�

�

�

�

�




�

�

�



�

�

�

~

~ ~

y

F

x y2

2

1

2 , g
21

0� .

Then taking into account (22) we obtain

g
A i A

11

2

2

2

2

1

2

1

2

2

� � �

�

�

( )�

�

�

�
,

g
A

i
A

02

2

2

2

2

1

2

1 1�

�

�

�

�

�

�

�

�

�

�

� �

( )

( )

�

� �
� , (23)

g
A

i
A

20 2

2

2

1

2

1

2

1� � � � �( ) ( )�

�

�
�
, g

21

0� .
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According to [21], we use (23) to calculate the expressions

C
i

g g g g
g

1 20 11 11

2

02

2
21

0

2

2

1

3 2

( ) | | | |� � �

�

�

�

�

�

� �

�
,

Re C
A A

1

2

2

2

2

2

2

0

8

1 2 0( ) ( )� �

�

�

�

�

�

�

�

�

� � �

� �

� � ,

Im ( )

( )

( ) ( )C A A
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The main analytical characteristics of the limit cycle can be found from formulas
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where the matrix

~

A has the form (6).

Since the Floquet parameter is greater than zero, 

2

0� , the limit cycle is unstable, which agrees with the use

of the Marsden and McCraken stability criterion (19), (20). The limit cycle period T , as �
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where �
0

2

can be found from formula (8) for �
5

0� (is obtained from relations (8) and (9) as �
5

� �). For �
5

0�

it is shown that �
2

0� and, hence, the periodic solution exists for � ��
0

(“subcritical” bifurcation). To write the

periodic solution to within the initial phase, we can use the procedure proposed in [21].

Let us find some estimates for the oscillations period. For �
5

0� (no inflow of biogenic material), k
1

0 5 0 6� �. . year

�1

(in case of absent fragmentary material ( )W � 0 and small amount of the biomass B, its increment is 50–60% per year),

when k
1

and k
2

belong to the small segment (10) in the triangle 0 1

2 1

� � �k k , we obtain � �� �
0

0.1� 0.2, whence

the dimensional period is T k� �2

0 1

� �/ ( ) 50–100 years. For �
5

0� near the value � � � �
3 5 1 2

1 2 0� � � �( ) / ( ) (�
3

varies in wide range due to the parameterU ) it is possible to make �
0

rather large (of the order of one). For real values of
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�
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of the order of one and small expression ( ) ( ) ( )� � � � � �
2 1 1 2 2 2

4 1 2� � � � in the triangular domain 0 1

2 1

� � �� �

we obtain �
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1 2

� (
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)

/

det A of the same order ( )�
0

1 2� � , whence T k� �2

0 1

� �/ ( ) 5–10 years, which is ten times less

than for �
5

0� .

The proposed model is an attempt to describe complex interaction processes in coastal ecogeosystems. There are

ample opportunities to improve it: from taking into account the nonlinearity in Eq. (1) (cliff abrasion velocity and

material abrasion intensity as functions of the volume of the material, etc.) up to including new mechanisms and the

corresponding equations into the model, for example, for the velocity of seabed abrasion on the shelf. Applying

the mathematical apparatus of evaluations of the Hopf bifurcations for such problem can stimulate the use of the

analytical-computing technique outlined in [20–22] in searching and analyzing the Hopf bifurcations in mathematical

models of various ecogeosystems.

The model can be tested by means of decreasing times, which will give information about the ecological situation

for previous years for a long period of time.

CONCLUSIONS

In the present paper, we have applied the theory of dynamic systems to analyze the ecological state of seacoast

abraded by surface gravity waves. We have carried out the qualitative analysis of abrasion of a coast as an ecological

system on the basis of a simplified model described by the system of ordinary nonlinear differential equations.

The applied semiempirical model is based on averaged quantities and can be considered as an approximation of the

original hydrodynamic model. Unlike the well-known approaches, this model takes into account essentially nonlinear

effects and control (beach feed). The analysis has been carried out by stability theory methods. Because of impaired

ecological conditions, ecological equilibrium can be violated and passage to a new state (stable or unstable) is possible.

The characteristics of limit cycle have been obtained and its stability has been analyzed.
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