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ABSTRACT. The paper considers the linear system of differential equations describing the simultaneous
motion of an incompressible elastic porous body and an incompressible fluid filling in the pores. The
model considered is very complicated, since the basic differential equations contain nondifferentiable
rapidly oscillating small and large coefficients under the derivative signs. On the basis of the Nguetseng
two-scaled convergence, the author suggests a correct deduction of averaged equations which are either
the thermo-viscoelasticity system of equations (connected pore space) or the anisotropic Lamé system
of thermoelasticity.

Introduction

In the present paper, we study the problem on the simultaneous motion of a non-isothermal elastic
body perforated by a system of pores and channels (rigid skeleton) and a non-isothermal viscous fluid
filling in the pores (pore space). In dimensionless (not marked by primes) variables

L

Vx

x=Lx, t=71t, w =Lw, 0 =9,—0,

the differential equations for the dimensionless movements w and the dimensionless temperature ¢ in
a domain Q C R? have the form

02 0
ar s = dive (D@, 50 + (L = DeaDle,w) = (p+ 7 = o)) + pF,  (0.)
aTép% = divy (@, V.0) — 6[9% div, w, (0.2)
p + apxdivy, w = 0,
T+ ay(l — x) divy w = 0. (0.4)
Here and in what follows, we use the notation

Do, w) — 3(Veu+ (Vow)h),



ep = Xcpr + (1 — X)Cps,
e = Xsep + (1 = X)Qss,
Qg = Xy + (1 — X)Ozgs.
We assume that the characteristic function () of the pore spaces 2y C € is known.
The deduction of Egs. (0.1)—(0.3) and the description of dimensionless constants (all of them are
strictly positive) are given in [8].
The problem is closed by the homogeneous initial and boundary conditions

ow
wli—o = 0, Ehzo =0, Ol=0—=0, =z (0.5)
w=0, =0, z€S=00 0. (0.6)

In the proposed model, the ratio of the mean size [ of pores and the characteristic size L of the domain
considered serves as a natural small parameter:

o
£ = Z
We restrict ourselves to the case where the pore space is geometrically periodic.
Our primary goal is to find the limit regimes (averaged equations) as the small parameter tends to
Zero.

Let the following assumption hold.

Assumption 0.1. The domain Q = (0,1)? is a periodic repetition of the elementary cell Y& = £Y,
where Y = (0,1)3. The quantity 1/= is an integer, so that € contains an integral number of elementary
cells. Let Yy be the “rigid phase” of the cell Y, and let the “fluid phase” Y} be its open complement.
Also, we set v = 9Y; N OY;. The boundary v is a surface of class C1, the pore space Q% is a periodic
repetition of the elementary cell €Yy, the rigid skeleton €)f is a periodic repetition of the elementary
cell €Y, and the boundary I'* = 0QF N 005 is a periodic repetition of the boundary v in (2. In
addition, the domain €2 is connected.

Under these assumptions,

ep = cp(®) = X (®)epr + (1 — X*(@))cps,
p=p*(x) = x(x)py + (1 = Xx°(x))ps,
e = 05 (x) = X7 (@) sep + (1 = X7(@)) ses,
g = ag(e) = X" (x)aes + (1 — X*(x)) s,

where x(y) is the characteristic function of Yy in Y.

We say that the pore space is disconnected (isolated pores) if v N aY = (.

In the present work, we assume that the dimensionless parameters of the model depend on the small
parameter ¢, and there exist finite or infinite limits

lim au(e) = po,  liman(e) = Ao, limar(e) =70, limay(e) =pe,  liman(2) =1p.
The condition p, = 1o = oo means that the fluid considered and the rigid skeleton are incompress-

ible.
Simpler model for isothermal media were studied in [1-4, 7, 10, 11].



1. Formulation of Main Results

As usual, Egs. (0.1)—(0.2) are understood in the distribution theory sense. They properly include
Egs. (0.1)=(0.2) in each of the domains Q% and Qf and the boundary conditions

[9] =0, [w] =0, xyel®, t2>0, (1.1)
[P-n] =0, [a5Vy0-n]=0, xoel®, t>0 (1.2)
on the boundary I'*; where n is the unit normal vector to the boundary and
[pl(0) = w(s)(x0) — @(p)(20),
(o) = lim @(x),  op(xo) = lim p(x).

X—Tg X—To

Te; S
There exist various forms of writing Eqgs. (0.1)-(0.2) and the boundary conditions (1.1)—(1.2), which
are equivalent in the distribution theory sense. The writing in the form of integral identities is

convenient for us.

Definition 1.1. Functions (w?®, 6%, p*) are called a generalized solution of the problem (0.1)—(0.6),
(1.1)(1.2) if they satisfy the regularity conditions

w®, D(x, w®), div, w®, p°, ¢, V.0° € L*(Qr) (1.3)

in the domain Q7 = € x (0,7, the boundary conditions (0.5), the equations
p° + apx® divy w® = 0, (1.4)
7+ ay(l — x°) div, w* =0 (1.5)

almost everywhere in the domain ()7, the integral identity

2
/ <a7p‘5'w5 . %Tf — ' F ¢ — x*a,D(x, w) : ]D)(:E, %—?)

+H(1 = x)anD(z, w®) — (p° +7° — )L} : D(x, go))d:cdt =0
for all smooth vector-valued functions ¢ = @(x,t) such that
Ploa = @li-T = 0p/Ot|i—T = 0,

and the integral identity

/ ((achﬂE + ag divy wg)% —as, V0% - Vlf) dedt =0 (1.7)
Qp

for all smooth functions ¢ = &(«,t) such that {|aq = &|t—1 = 0.
In (1.6), we denote by A : B the contraction of two second-rank tensors in both indices, i.e.,
3
A:B= tr(B* o] A) = Z Az]B]z
G,j=1
In addition to the assumptions made in the Introduction, let there exist finite limits
il{g ses(£) = 205, i{% Cef = 50f, il{g agr(e) = Pof, il{g gs(€) = Pos-

In what follows, we assume that the following assumption holds.



Assumption 1.1. (1) The dimensionless parameters in the model (IN A)¢ satisfy the following re-
strictions:

0 < 3205, 20, fo, Ao < 005 70, Bogs Bos, P 5 1y < o0
(2) The functions F, 9F/0t, and 0*F /0t? are bounded in L?(Q7).

Everywhere in what follows, the parameters of the model can assume all admissible values. So, for
example, if 7o = 0 or 7 L'~ 0, then the summands containing these quantities disappear in all the
equations.

The following Theorems 1.1-1.2 are the main results of the present paper.

Theorem 1.1. Under the assumptions made above, for all = > 0, on an arbitrary interval of time
[0, T, there exists a unique generalized solution in the model (N A)?, and the following estimates hold:

ow* D2 we ow*
- < .
Jdnax ||| = (t)‘+a7 50 (t)‘ +‘Vm = () o < Co, (1.8)
06°
> < .
g (|5, , 190a) < o
£ £ < .
Orgt%(llﬂ Olz,.0 + [P |2,0) < Co, (1.10)

where the constant Cy is independent of the small parameter <.

Theorem 1.2. The sequences {w®} and {6°} strongly converge in L*(Qr) and weakly converge
in  L2((0,T); W4(2)) to functions w and 0, whereas the sequences {p*} and {n®} weakly converge in
L2(Q7) to functions p and 7. Moreover, the functions w, 0, p, and T satisfy the following initial-value
problem in Qp:

2

7, A . . 7,
Toﬁa—;:+V(q+7T—ﬁ09) — pF =div, (Al :]D)( w

x, E) + Ay D(x, w)

: (1.11)
2mm] + /(Ag(t —7) : D(x, w(x, 7)) + Bt — 7) div, w(zx,7) + B°(t — 7)9(w77)>d7>,
0
1 . o t — ) w(x, T
p—*p+md1vm'w = O/<Cl(t ) : D(@, w(z, 7)) (1.12)
tai(t = 1) dive w(x, 7) + af(t — 7)0(x, 7)) dr,
1 . o t — ) w(x, T
L (L= ) divy w O/(Cz(t ) Dz, w(z, 7)) (1.13)
+ag(t — 7) divy w(z, 7) + ad(t — 7)0(x, 7)+ ) dr,
00 ﬁof Op  PBos Om 0
TonE a Px at %E  (Bos - ﬁof)aawm (1.14)

= div, (Bf - V.0) + V.



The problem is closed by the homogeneous initial and boundary conditions (0.5) and (0.6) for 0 and w.
In (1.11)~(1.14),

ﬁ:meJFPs(l—m): Bozﬁofm+ﬁos(1_m)y ép:Cpfm+Cps(1_m)7
A1, Ay and Az(t) are fourth-rank tensors, B(t), B%(t), BY, C1(t), and Ca(t) are matrices, and a(t),
az(t), af(t), a4(t), and a(t) are scalar. The precise expressions for these object are given by formulas
(4.20)(4.27) below. The matriz BY is strictly positive-definite.
In the case where the pore space is connected, the symmetric lensor Ay is strictly positive-definite.

Otherwise, A1 = 0, and system (1.11) degenerates into a nonlocal anisotropic Lamé system with the
symmetric strictly positive-definite tensor As.

2. Preliminaries

The proof of Theorem 1.2 is based on the systematic application of the two-scaled convergence
method suggested by G. Nguetseng in [9], which finds wide application in averaging theory (see, e.g.,
the overview [6]).

Definition 2.1. A sequence {¢*} C L%(Q7) is said to be two-scaled convergent to the limit p € L?(Qr x Y)
iff the following limit relation holds for any smooth function ¢ = o(x,t,y) 1-periodic in y:
11\1}(1) O (x, t)o(x,t, x/=)dedt = //go(w,t,y)a(w, t,y)dydxdt. (2.1)
£
Qr Qr Y
The existence and main properties of two-scaled convergent sequences are stated in the following
theorem [6, 9].

Theorem 2.1 (Nguetseng theorem). 1. From any sequence bounded in L*(Qr), we can choose a
subsequence two-scaled converging to a certain limit v € L*(Qr x Y).

2. Let sequences {07} and {eV©°} be uniformly bounded in L?(Q1). Then there exist a function
o = p(x,t,y) l-periodic in y and a subsequence of {p°} such that ¢,V € L2(Qp x Y) and ¢° and
eV two-scaled converge to ¢ and Vyp, respectively.

3. Let sequences {¢°} and {V,¢®} be uniformly bounded in L?(Qr). Then there exist functions
© € L2(Qr) and ¥ € L*(Qp x Y) and also a subsequence of {p®} such that v is 1-periodic in
y, Vy € L3(Qr x Y), and ¢° and V.° two-scaled converge to ¢ and Vypo(z,t) + V,b(z,t,y),
respectively.

Corollary 2.1. Let 0 € L2(Y), and let o°(x) = o(x /). Let a sequence {p®} C L*(Q7) two-scaled
converge to a certain limit ¢ € L*(Qp x Y). Then the sequence o°¢® two-scaled converges to oip.

Everywhere in what follows, we use the following notation:

(1)
@)y = / Dy, (By, - / xBdy, (@), = / (1 - )@ dy,
Y Y Y
(o = /cpdw, (©rar = /sodxdt;
QO Qr

(2) if a and b are two vectors, then the matrix a ® b is defined as
(a@b)-c=a(b-c)

for an arbitrary vector c;



(3) if B and C' are two matrices, then B @ C' is a fourth-rank tensor such that its contraction with
an arbitrary matrix A is given by the formula

(B C): A= B(C: A);

(4) denote by 1¥ the matrix such that its unique nonzero entry equal to 1 stands at the intersection
of the ith row and jth column;
(5) finally,

S y 1
JY = 5(]1” + ) = 5(6,' ®ej+e;®e;),
where (ey, ez, e3) is an orthonormal basis.
3. Proof of Theorem 1.1

The following estimate holds for all £ > 0:

ow? Pw? . Ow 06°
o@f?%(vo“ Ve 0) . +var| a0 279+ V|| dive =5 (1) 228 +var| 50 m)
82 £ o6¢
N | Yo /| R [ VAV v < Co, (3.1)

where (y is independent of £. It is obtained after the differentiation of the equations for w® and 6° in
time, the multiplication of the first equation by 9?w?®/9t? and the second by 96¢/0t, the integration
by parts, and the summation. This estimate guarantees the existence and uniqueness of a generalized
solution of the problem (0.1)—(0.6), (1.1)-(1.2).

Estimates (1.8) and (1.9) follows from estimates (3.1) and the Poincaré inequality.

Estimate (1.10) for the pressures follows from the integral identity (1.6) and estimates (1.8)—(1.9)
as an estimate of the corresponding functional if we normalize the pressures in such a way that

[ @0+ @) e~
Q
Indeed, it follows from the integral identity (1.6) that

[0 @01 7 (@) div, | < OV
Q

Now choosing 1 such that p® +7¢ = div, 1, we obtain an estimate for the sum (p®+7¢) of pressures.
Such a choice is always possible (see [5]) if we set

P =Vip+o, divpo=0, Ap=p°"+7° vlaa=0, (Vi +1o)laa=0.

It remains to note that by the orthogonality of the functions p* and 7°, the estimate of the sum implies
estimates for each of the summands.

Also, we note that the renormalization of the pressures changes the equations of continuity (1.4)
and (1.5) to the equations

1 . - 1 1
— d f = ——~%yF 3.2
o + x° div, w X (3.2)
and ) )
—7° 1 —y%)di R —— ) [V 3.3
o (v (1), (33)
where

7 = (1= x7) dive w)o.



4. Proof of Theorem 1.2

4.1. Weak and two-scaled limits of sequences of movements of temperatures and pres-
sures. By Theorem 1.1, the sequences {w®}, ¢°, {pf}, and {n°} are bounded in L?(Qr) uniformly in
. Hence there exist a subsequence from {¢ > 0} and functions p, 7, w, and € such that as £ \_ 0,

p° —p, 7 — 7 weaklyin L*(Qp), (4.1)
w® —w, 6° — 0 stronglyin L*(Qr), (4.2)
V,w® — Vyw, V.07 — V.0 weakly in L*(Qg). (4.3)

Using the latter relations and the Nguetseng theorem, we conclude that there exist functions
Pz, t,y), ll(x,t,y), O(x,t,y), and W(x,t,y) l-periodic in y such that the sequences {p°}, {n°},
{Vé}, and {Vw*"} two-scaled converge to P, 11, V,0+V,0, and V,w+V, W respectively, as £ \ 0.

4.2. Micro- and macroscopic equations.

Lemma 4.1. The two-scaled limits of the sequences {p®}, {n°}, {V0°}, and {Vw?®} satisfy the fol-
lowing macroscopic relations in Yy =Y x (0,71):

1 . . Y ,
%H + (1 — x)(divy w + div, W) = a—m (1 —x); (4.4)
pi*P + x(divy w +divy W) = —%XQ (4.5)
Vy(P + 1= (Borx + Bos(1 — x))0) = divy (xuo <]D)<:E, %’)
oW (4.6)
12(5. 57 )) (1= (DG w) 1 D W)
divy<X”0f(vme +Vy0) + (1 — x)kos(Va0 + vy@)> = 0. (4.7)

Lemma 4.2. The weak and strong limits p, m, 0, and w satisfy the following system of macroscopic
equations in Qr:

1
n—7r + (1 —m)divy w + (divy W)y, =; (4.8)
0
1
p—p +mdivy w + (divy W)y, = —; (4.9)
02 A 0
Toﬁa—;: L V(g 47— (o) — pF = div, (uo <m1D> <x a—i’)
W (4.10)
+(D Y, 7 + )\O((l - m)]D)(:v, w) + <]D)(y7 W)>Yf) ;
Yy
.00 Doy Op s On oy
I b Mt N el . — Ly
i T Gl (4.11)

= div, (/ﬁof(mvgﬂ +{VyO)y;) + kos((1 = m)V0 + <Vy@>Ys)>-
In (4.4)-(4.11), we have
v = ((divy W)y,))a, = pymtps(1—m), fo=foym+Pos(l—m), and & = cppm+eps(1—m).



Proof. To prove (4.4) and (4.5), we multiply Eqs. (3.2) and (3.3) by ©* = ¢ (x,t,x/s), where ¥(x, t,y)
is an arbitrary function l-periodic in y, and integrate the result over the domain ). Passing to the
limit as £ N\, 0, we obtain the required relations.

Equations (4.6) and (4.7) follow from the integral identities (1.6) and (1.7) if, as test functions, we
consider the functions of the form ¢® = sp(x,t, x /<) (identity (1.6)) and £° = &(x,t,x/<) (identity
(1.7)), where ¢(x,t,y) and &(x,, y) are arbitrary functions 1-periodic in y, and then pass to the limit
as €\, 0.

Equations (4.8) and (4.9) are the result of averaging Eqgs. (4.4) and (4.5) over the elementary cell
Y, and Eqgs. (4.10) and (4.11) follow from the integral identities (1.6) and (1.7) after passing to the
limit as £ \, 0 with test functions independent of the “fast” variable y. In this case, in identity (1.7),
we have used the equations of continuity (3.2) and (3.3). O

4.3. Averaged equations.

Lemma 4.3. The weak and strong limits p, 7, 0, and w satisfy the following system of averaged
equations in Qr:

02 . 9
Toﬁa—;: +V(q+ 71— [o0) — pF =div, <A1 : D(% 8_1:> + Ay : D(z, w)

¢ (4.12)
+ /(Ag(t —7) : Dz, w(x, 7)) + B(t —7) div, w(zx, 7) + B (t — T)G(:ﬂ,r))dT) ,
0
! i = — t —7): w(x, T
—pt mdiv, w 0/(01@ ) D(x, w(w, 7)) i
ta1(t — 7) div, w(z, 7) + af(t — 7)0(z, 7))dr,
! i = — | — 7)) w(x, T
o (L= m) div 0/(02@ ) D(x, w(w, 7)) i
tas(t — 1) dive w(zx, 7) + ad(t — 7)0(, 7)+)dr,
.00 Pordp  PosOm d
S T o B o Ot + (Bos — 6Of)aa<9>9 (415

= div, (Bf - V.0) + V.

Here, Ay, Ay, and As(t) are fourth-order tensors, B(t), B%(t), BS, C1(t), and Cy(t) are matrices,
and ai(t), ax(t), af(t), a4(t), and a(t) are scalars. The precise expressions of these objects are given
by formulas (4.20)—(4.27) below.

Proof. We set

ow

Z(x,t) = MO]ID(:E, E) —XD(z,w), Zjj=e;-(Z-e;), z(l)=(0)a,

z(x,t) = Zzi(w,t)ei = (koy — kop)Val, 2o(z,t) = div, w.
i—1



As usual, we seek solutions of the macroscopic Eqgs. (4.4)—(4.7) in the form

W = / [WO (y,t —7)zo(x,7) + Z Wi(y,t —1)Z;(x,7)
,5=1

WOy, t —7)(0(z,7) — 21(7)) + Wiyt - T)Zl(f)] dr,

t
Px/
0

+Py, t = 7)(0(m,7) — 21(7)) + P{(y, 1 — 7)21(7)] dr,

¢
n-(-y [
0

HI(y, t — 7)(0(x, 7) — 21(7)) + 11 (y, t — 7)21(7)] dr,

3
Po(yyt - T)ZO($7T) + Z Pij(y7t - T)Zij($77)
i—1

%y, t — 1)z0(z, 7) + ZH” y,t Zii(x,
4,5=1

0= Z@’ )zi(x, 1),

7)

(4.16)

(4.17)

(4.18)

(4.19)

where the functions W°, W? wi  po P‘97 PY_TI°, 11, TI¥, and ©° 1-periodic in y satisfy the

following initial-value problems in the elementary cell Y

Problem (I):
. oW
divy (x (uoD (y, 5 )

11— 0Dy, W) — (1 — I 1 XP”)H)>> o,

1 . . 1 . .
(p—)P” + xdiv, W9 — 0, <U—>H” + (1= x) div, W9 =0,
* 0

W (y,0) = Wi(y), divy(x(pD(y, W§) +J7)) =0
Problem (II):

aivy (x(oB (. 25-) + (1 = 00080, W)
(=0 D)) 0. W(50) -0,

(p )PO + x(div, W2 1) = 0,

i 0 — iv 0 =
(770)11 + (1 —x)(divy, W +1) = 0.




Problem (III):

aivy (x(om (. 25) + (0= )0l W)

4a—xm9awﬁ—mm—QM1—Mﬂ0)

1 1
(p-) P? + xdiv, W? =0, <U—>H9 + (1 — x) div, W¥ = 0.
* 0

Problem (IV):
9
divy (X (uo]D) (y, 8?; > + (1= x)(oD(y, W9)
(=008 P = o= (1= D)) =0 Wiw.0) =0,

1 )
(;)Pf+x&wﬂV?—@MmﬂmwﬂV%n,

1—X
IT ivy W9 = (div, WY :
<n0> T+ (1 —x)divy Wi = (divy 1>Ysl_m
Problem (V):

divy ((xkor + (1 — X)K0s) V4O + xe;) = 0.

that
3
Ay = pom Z J9 @ g% ‘|‘MOA£7
ij=1

Al = 1o Z (W), @ JY,
1,j=1

3
Ay = M(1 —m) Z J9 @ J9 — )\OAS JrMOA{(O)y

4,j=1

As(t) = o2 AL (1) — MoA (1),

0, xW%y,0) =0,

Furthermore, substituting expressions (4.16)—(4.19) in the macroscopic Eqs. (4.8)—(4.11), we find

(4.20)

(4.21)

(4.22)

(4.23)



3
Ci(t) = —Co(t) = Y (divy W)y, J7,  a(t) = (div, W)y,, (4.24)

ij=1

ar(t) = —az(t) = (divy W)y, af(t) = —ad(t) = (divy, W)y,, (4.25)
ow?
50 = oD (5. Z55)) 1 Al Wy, (1.26)
Yy
3 . .

B =Kol + Y {ror(VO)y, + ros(VO)y,} @ e, (4.27)

=1
where o = mror + (1 — m)kos. O

Lemma 4.4. The tensors Ay, Ay, and As, the matrices B, B?, BY, C1, and Cy, and the scalars ay,
az, af, a4, and a are correctly defined and are infinitely many times differentiable functions of time.

If the pore space is connected, then the symmetric lensor Ay is strictly positive-definite. Otherwise
(isolated pores), Ay = 0, and the symmetric tensor Ag is strictly positive-definite. The symmetric
matriz BY is strictly positive-definite.

Except for the assertion on the matrix, Bg , the main steps of the proof of the lemma can be found
in [7]. The properties of the matrix BY are well known (see [11, 12]).

1.

2.

10.
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