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The proving method of the Cauchy problem solvability of the Boltzmann kinetic equation with spatially uniform
initial data in the case of particle scattering cross-section finiteness is proposed. It is based on the construction of the
auxiliary vector-valued random process such that the particle velocity distribution function satisfying the Boltzmann
equation is the first order marginal probability distribution of this random process.

1. INTRODUCTION

The Boltzmann equation has got the origin of the
physical kinetics. Building of the equation and its
physical predictions have played the great role during
the development of representations concerning evolu-
tion irreversibility that are taken place in nature. Later,
this equation has got also the practical mean for calcula-
tion of kinetic coefficients of real gently dense gases
and also for the study of the motion of solids in the di-
lute gas environment. In this connection, the mathe-
matical correct results concerning some solution proper-
ties of the Boltzmann equation have gained special im-
portance. In particular, the Cauchy problem solvability
of the equation is of interest. First results in this direc-
tion have been obtained by D.Hilbert [1] and
T.Carleman [2]. All stationary solutions of the Boltz-
mann equation have been found and the theorem of the
final behavior of solutions at the unbounded increasing
of time has been proved. Besides, the spectrum of corre-
sponding linearized equation has been investigated. Fur-
ther, in connection with the development of the ap-
proximate methods of the equation solving, the Chep-
men-Enskog asymptotical analysis has been created [3].
The modern state of the mathematical physics area
which is connected with the Boltzmann equation see in
[4]. In the present work, we propose the new approach
to study the Boltzmann equation solutions which is
based on the random process theory. This method per-
mits to approach in a new fashion to the Cauchy prob-
lem solving of the Boltzmann equation and to the con-
struction of approximations of corresponding solutions
with the controlled accuracy.

2. THE BOLTZMANN EQUATION

For formulation of the Boltzmann equation in the
form that is convenient for our aim, it is required the
following presentation of scattering data in the classical
mechanics for the pair of identical particles. Let v and
v' be two particle velocities before the collision when
they are on such a distance where one may consider
them as the noninteracting ones. Further, let V and V'
be corresponding velocities after the collision when the
particles have gone away so far that they become nonin-
teracting again. These velocities are represented by the
definite functions of velocities v, v’ and the vector r

which is on the plane being orthogonal to vectors
(v.v), ie. V=(v,v',r),V'=(v,v'.r). On the defini-
tion, the vector r begins at the straight line on which
the first particle arrives from the infinity and it is fin-
ished at the analogous straight line of the second parti-
cle. The vector r has the minimal length among all vec-
tors possessing the properties pointed out. The functions
V., V' are defined by the interaction potential
@(r, —r, ) between two particles, where r,r, are
space position vectors of particles.

For the determination of these functions, it iS neces-
sary to solve the mechanical scattering problem of two
particles interacting by means of the potential @ . Fur-
ther, we consider only the spatially homogencous gas of
particles. In this case, the Boltzmann equation is formu-
lated for the distribution function f(v,7) that depends
on the velocity v of the mentioned particle and the time
¢ . It has the following form (see, for example, [5])

JO.0=p[Iv=vISV.DSV'.0) )

—fv, ) (v, 0))dv'do
where the dot means the differentiation on 7 , the pa-
rameter p >0 represents the density of particles and

the integral on do points out the integration on all val-
ues of the vector r.
The function f(v,7) isthe probability density func-

tion, i.e. f(v,t)>0 and the equality
[rev.tav=1 )
R3
takes place. The functions V=(v,v',r) V' =(v,v' r)
have the properties
V24VZ=vy24y? 3)

which express the conservation laws of momentum and
energy at collisions. From Eq. (3), the equality of rela-
tive velocities follows,

V+V'=v+v',

V-Vi=v-v]. €]
Besides, the symmetry property
V=W vr)=V'=(vv'r) &)

takes place. It corresponds to the particle identity. Let us
introduce the vector function n=n(v,v'.r)|n|=1,
satisfying to the equality



V=%[(V+V')+H|V—V'|],

V'=%[(V+V')—H|V—V'|]. 6)

Further, we notice that for the complete
characterization of the scattering of two particles, it is
necessary to introduce, in addition to the functions V
V', the vector function R¢v,v',r) also. Its values lay in
the plane being orthogonal to vectors V, V'. The vector
R is defined similarly to the vector r but it is done
relative to the straight trajectories of particles going away
with the velocities V, V'. From the energy and
momentum conservation, the equality |R |5 r|=r fol-
lowdhe reversibility of mechanical motion leads to the
fact that the functions V =(v,v',r), V' =(v,v' r) sat-
isfy to identities

v=-V(-V-V'.R), v'=-V'(-V,-V'R) @)
and, besides, r = R(-V.-V'.,R).

In the case when the potential is spherically symmet-
ric, all vectors v,v',r,V,V' R lay in the common plane.

Let us transform the right-hand side of the equation
(1) to another form which is more suitable for our con-
struction. With this aim, introducing the additional inte-
gration by means of & -functions, we write down

.0 = [wevwu)(f @0 S0 ®)

—f(V.O) f (v, D)dv' dudu'.

The non-negative function w is named the intensity of
scattering (v,v’> = (u,u’) process. It is determined by
the formula

wiv,viau' )=

=p|v-V| jé(V—u)é(V'—u’)do.
According to Egs. (5,7), it satisfies to the following
identities

wiv,vhuu’ ) =wivi,vu',u),

®)

(10)
wiv,vhuau )=wi—u,—-u';—v,—V ). (1n
The function w contains the J -functional

singularities which are connected with conservation

laws. Indeed, changing the argument of the second & -
function in Eq. (9) according to the first identity of

Eq. (3) and also using the condition presented by the

second o -function, we obtain
wiv,viuau' )=

:p\v—v'\5(V+V'—u—u')j§(V—u)d0. (12)

We change the function V in the integrand expression
according to Eq. (6) and we use the first identity of
Eq. (3).

[6(V-wjdo =2[5(u—u-n|v-v|do .
Decomposing three-dimensional & -function depending
on the vector argument (u —u’ ) on the product

|v—v'|-25(v—-V'|—|u-u'])

xo((u—u")/|v—-v'|-n)
and after that transforming the first 6 -function with the

account of equality v+v'=u+u’ which is carried out
in the integration domain, we find

_‘.5(V—u)alaz2|v—v'|‘1
x5(vZ+v2-u? -u?)
xjé((u—u')/|u—u'|—n)d0.

(13)

Since the function n(v,v',r) realizes one-to-one corre-

spondence between the plane of the vector r changing
and the unit sphere, the last integral is equal to the Jaco-
bean of corresponding map

jé((u -u')/|u—-u'|-n)do
= (Dm)/ D(X))p=m |
where m=(u-u')/|u-u'|. Together with Eq. (12)
and Eq. (13), it gives the final formula
w(v,vi,uu')=4p5(v+v'—u—-u')
xS(W2+v2-uZ -u?) | (DM)/D@))p=m |7 .

3. M.KAC PROBLEM
Solutions which possess the following properties:
a) f(v,t)=0 atall t>0,if f(v,0)>0;

b) _f f(v,t)dv does not depend from ¢,
R3

we name as the probabilistic ones.

In connection with the existence of probabilistic so-
lutions of the equation (1), M. Kac has set the problem
[6] of the comstruction of such a random process

(¥(1);120) for which the function f(v,7) is the first
order marginal distribution density,

f(v,t)= dorv) Pr{v(t)ew(v)}.

This function should completely define the probability
distribution of the process in its sample space

4

( R’ )R+ teR . i.c. the function should define all set

of marginal distribution densities [ (v .f;.;v .1 )

of order n € N, which are consistent, i.c.
jfn(vl,tl,'...,'vn,tn)dvn =
:fn_l(vl,tl;...;vn_l,tn_l).

They generate the process probability distribution ac-

cording to the Kolmogorov theorem. It means that

Jv.t)=fi(v.t) and all densities of higher order are

some functionals f (v .t,;.ov .t )=f [f(v.1)].
Constructive building of such a random process on
[0,90) for which the probability distribution of initial
values satisfies dPr{Vv(0)cw(v)}/ dao(v)= f(v,0)
solves the Cauchy problem on R, for the equation (1)

with initial data f(v,0) . Below, we offer a building of

this process in the case of finiteness of cross-section of
particles scattering.

4. THE WEAK SOLVABILITY
We construct the process (V( t)t> 0) as the weak

limit in the space ( R’ )R+ of the sequence

<V(N) (t);t= 0>,N =12...of random processes. It



means that all densities
f,,(N)(vl,tl;...;v,,,t,,),neN converge weakly at
N —>o to the infinite set of densities

fn (vl,t1 I I J,neN consistent with each other,

marginal

i.e. sequences of corresponding characteristic functions
converge

n
J-eXp iZ(kj;Vj) fn(N)(Vlatl;---;vnatn)dvl---dvn
L /=1 J

%

14
jexp iZ(kj;Vj) S (V115 5V B )dV . dv
L /=1 _
In particular, the weak
f (N) (v,t)—> f(v,t) to the Boltzmann equation solu-
tion takes place.

We use the Prokhorov criterion of weak compact-
ness measure sequence for the proof of the weak con-
vergence of random processes sequence. It is formulated
as follows.

convergence

If the sequence of measures ,u(N),N =12.. on a

metrical separable space L (being not necessarily
complete) such that for this sequence there exist a com-
pact function ¥ on space L having uniformly bounded

N
average values on measures ,Ll( ) ,

_[‘I’(x)dy(N) (x)<const, so this sequence is weakly
L
compact.

We choose the space of all piecewise constant func-
tions V(t),te[0,7] with vector values as the sample

space L of all processes.
Each random trajectory V(¢) is characterized by the

sequence  of  pairs <<§n,?;,>;neN>, where

a =v

,=V,—V,_,n=12. are random function jumps

which occur in random time points ;;,” =12.... We put

IV O.¥"'O1=¥'(0)-¥"(0) |+
Y AN
n
where the summation is carried out on all jumps of both
functions being in the one-to-one correspondence ac-
cording to their order on /0,7 ] . If one of the functions,

(15

for example, V''(f) has greater number of jumps in

comparison with the other function, so it is necessary
formally to put that the last has zero jumps in those
points ?;,” where jumps Ein” do not have correspond-
ing jumps a '.

The functional J2 N is the deviation on L be-
tween two functions V'(f),V''(f). The functional
Pyl defined by the formula

P2V (O.9"O]1=D | T, -T,"| (16)

is the deviation too. Here, points 7 ’,7 '’ are set in one-

to-one correspondence according to the one-to-one cor-

respondence  between jumps of the functions
V(1) V"' (t). Itis easily to verify that the functional
dist[¥' (). ¥"' (D] = p1 [V' (). "' (1)]
+p2[V'(0.¥" (D]
is the distance in the space L between functions
V' (t),V''(t). The space L is separable relative to this
distance. Besides, it is established that those function
sets for which the jump number does not surpass any-
thing number m e N, are precompact relative to the
topology connected with the distance dist[--]. There-
fore, for the fixed interval /0,7 ], we construct the
function W[] on L putting that its values for each

function VeL are equal |(7,;neN)n[0.7)| to the
random number of its jumps on /0,7 /. Then, we get

a7

that sets {veL:W[v]<M} are compact for any
M >0 and, hence, the function ¥[-] is compact.

5. THE BOLTZMANN RANDOM PROCESS
We construct the random process <V( t);teR +>

which solves the Kac problem. It is named the Boltz-
mann process. At the assumption of the cross-section o
finiteness, we introduce the functional

qlv. f1= jw(v,v';u,u')f(v',t)dudu'dv'

Aot At (18)
= po || v=v'| f(V)dv
and an the kernel
O(viuu' )= _[w(v,v' suu’ Jdv’ . (19)
R3
Due to Eq. (11), it takes place
J.Q(V;u,u')dv =polu-u'l. (20)

R3

In terms of introduced values, equation (8) is repre-
sented in the form of

S0 =[0(vuu) f(u.1)f (', )dudu’

—qlv: f1/(v.0).

Let us require that the first order marginal densities
F N vit), N =12... of the

(v( NDg)rs 0>, N =12..., satisfy to the identity

ey

Pprocesses

S (v.t+8)= fW) (v, 1) exp(=glv: (M) ]A)
+(1-exp(=glv; f M) ]A))
x [O(vuu) f ) 1) f N @', )dudu’
where A=7/N and N — .
To achieve this aim, we construct for any N € N the

(22)

random process <V(N ) (t);teR +>. Trajectories of the

process at N € N are defined by the formula
VO ) =¢¥") ste [(1-T /NIT /N),l €N}

where the random sequence <VZ(N ) ;leN> is the

nonlinear Markov chain with the state space R> which
is defined by the distribution density

J1(v) =

do(v) Pr{v; cw(v)}



of random variable VZ(N ) at the moment /. This den-

sity is changed during one evolution step by the follow-
ing way

[ vy = 19 (vyexpqlv: £ 18) +

(1-exp(=glv; /" 18)g 1 v; £ 1% (23)
< Jotvuu) £ @) ) @')dudu'
The  changing points of the  process

<V(N) it e R+> belong to the set {/T/N;l e N}.

Let ¥[v(f)] be the number of the changing points
of the function in L . The average number of changing
points of the chain trajectory v ; ,1=01,..,n isequal to

n-1
> A-exp(-qlv: £ Dy v: £07 1

i jl ([ ov:uu') £, (u')du')fl(N ) (w)dudy.
Since all random points of the chain are in one-to-one
correspondence with changing points of the process
<V(N ) (t);teR+>, the average value <‘I’[V(N ) (t)]> is
defined by above expression too. Then, at A — 0, we
have

[PV ()] o

t

[([ow:mu) £ @0 £ 09 (u. s)du duives.
0

Consequently, this average value is bounded,
<\P[V(N ) (t)]> % PG X

t
j(ﬂ u-u'| f(N)(u',t)f(N)(u,s)du'du)tIs <. b
0
< 2pct<u2>l/2

1/2
)

where the squared average (u2 of the velocity

v () does not depend on ¢, since the Boltzmann

equation conserves the kinetic energy. Thus, due to the
inequality (24), one may apply the Prokhorov criterion

for measures connected with processes

<V(N Y1)t e R+>. On the basis of this criterion, these

processes weakly converge to a process <V(t);t € R+> .
In this case, all marginal distributions of the processes
<V(N ) (t);teR+>, weakly converge to corresponding

marginal distributions of the process <V(t);t € R+> at
A — 0. Then, on the basis of Eq. (22),

S+ - v,

1= g—alvir P ola

SUATARGY

< [Ovivv) f O (v SN (va. Ddvidv,

_ f(N )(V, 0.
Therefore, the one-point probability density fj(v,f) of
the limit process (V(1):7€ Ry ) satisfy to Eq. (1), ie.

the existence of the random process <V(t);t € R+> leads
to the existence of the weak solution of the equation (1).
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MOCTPOEHHUE BEPOSATHOCTHBIX PEIIEHUI YPABHEHHUS BOJIBIIMAHA
FO.I1. Bupuenro, T.B. Kapabymosa

[pennaractcs METOA AOKA3ATSIBCTBA PA3PEIIMMOCTH 3a1a4u KoM 11 KHHETHYeCKOTO YpaBHeHus bombiMana
C MPOCTPAHCTBECHHO OJHOPOJHBIMH HAYATGHBIMA JAHHBIMH B CJIy4ac KOHCUHOCTH CCUCHHS PACCCSAHHUS CTAIKHBAIO-
OIAXCS YaCTHL. METOX OCHOBAH HA MOCTPOCHAH BCIIOMOTATSIFHOTO BEKTOPHORHAYHOTO CIY4aifHOTO MpoIecca, Ta-
KOTO, YTO (DYHKUHS PACHPEIACTICHHA IO CKOPOCTAM YACTHL, VIOBICTBOPSIOMAA YPAaBHCHHIO BoybiMaHa, ABIACTCA
€r0 YACTHBIM PACIPEICIICHUEM BEPOATHOCTEH TIEPBOTO MOPSIKA.

MOBYJIOBA HMOBIPHOCTHHX PO3B’S3KIB PIBHAHHS BOJIBIIMAHA
FO.I1. Bipuenxo, T.B. Kapabymoea

[TponoHy eThCSI METOA TOBEACHHS PO3B’ A3aHH: npodiaemu Komri 1y kineTHyHOTO piBHAHHS boxbnMana 3 mpoc-
TOPOBO OJHOPIAHOI0 MOYATKOBOI (DYHKIIE€I0 V BHIAJKY CKIHYCHHOCTI IIEPEpi3y PO3CLIHHA YACTHHOK, IO
3ITKAFOThCA. METOI OCHOBAHHH HA MOOYJ0BI BSKTOPHO3HAYHOTO BHIAAKOBOTO MPOLECY TAKOTO, IO (DYHKINA PO3-
MOJUTY 3a IIBHAKOCTSMH YAaCTHHOK, SIKA 33I0BOJIBHAE PIBHAHHIO bonmbiMana, € HOro YacTHHHUM PO3MOIIOM HMO-
BIPHOCTEH MEPIIOTO MOPSAKY .



