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ABSTRACT. In this work, the problem of percolation of the Bernoulli random field on periodic graphs
A of an arbitrary dimension d is studied. A theorem on nondecreasing dependence of the probability
of percolation Q(ci,...,c,) with respect to each of the parameters ¢;, ¢ = 1 +n, — concentration of the
Bernoulli field is proved.

1. Introduction

The study of the percolation theory was initiated in [1] as an attempt to model mathematically
physical phenomena occurred in randomly inhomogeneous media. Later, this mathematical theory was
divided into two directions substantially distinct from each other called, respectively, the discrete and
continuous percolation theory. The first of them, in whose framework a lot of deep results of qualitative
character was obtained (see surveys and monographs 2, 4, 5, 7-9]), studies the percolation properties
of random sets on connected infinite graphs [6], in particular, on so-called periodic graphs [4]. However,
up to now, there is no regular method of calculation with any accuracy given in advance of the main
quantity, the probability of percolation Q|c| for some wide range of infinite graphs in this theory. This
probability is induced by the distribution of probabilities of random sets and is a function of its defining
parameters collection ¢ = {c1,...,¢m). An obstacle in the creation of such a method is the complexity
of obtaining apriori estimates for approximations of the function Q[c| in the so-called critical domain
of variation of parameters c. In particular, it is difficult to give a mathematical substantiation of the
statement on the common apriori qualitative properties of the dependence Q|c| that are expected for
physical reasons. One of such properties is the monotonicity of the dependence of the percolation
probability for the Bernoulli random field on probabilities of the filling-in of vertices of the graph. It
manifests itself in exactly solvable models and is used in heuristic speculations; however, its proof is
absent in the literature. In the present paper, we suggest a rather transparent proof of the statement
on monotone change of the probability of percolation for the Bernoulli random field of the general
form. Moreover, our proof does not use the so-called FGK-inequalities [3], which are usually a tool
for establishing such facts in statistical mechanics.



2. The Problem of Discrete Percolation Theory

Let A(V,®) be an infinite non-directed graph (without loops and multiple edges) with the set of
vertices V' and the set of edges ®. The index of each vertex of the graph is assumed to be finite.
Further, speaking of an “arbitrary graph,” we mean only graphs of the mentioned type. Following to
G. Kesten, we will say that such a graph is periodic of dimension d € N if there exists an embedding
M : V — RY for which the image MV consists of isolated points and is invariant with respect to
translations of periods (ay, ...,aq) € R? together with the image M® of the set of edges, i.e.,

MV +nma; + -+ ngaqg =V, M® +nja; + - +ngag =&
for any (ny,...,ng) € Z%. In this case, the set V is divided into a finite set of classes R,j=1+m,V =

m

U &; of equivalent vertices, i.e., such that they pass to each other under the mentioned translations.
j=1

The importance of the study of periodic graphs is stipulated by their importance in applications.

We denote the adjacency relation for the pair of vertices x and y from V by xpy, ¢ € &. Any
sequence 7 = (Xg,Xi,...,X,) of vertices of the graph A such that x;_1px;, j = 1 +n is called a
path of length n. The distance between two vertices x and y on V is the minimum of lengths of all
paths such that x and y are their endpoints. The path v = (x¢,x1,...,%,) is called a path without
self-intersections if the distance between any two vertices x; and xj, K —j > 1, on this path is greater
than 1.

Let, on a periodic graph A, a Bernoulli random field (¢(x);x € V') be given, which is defined by
ac = (c1,...,0m), corresponding to each of the equivalence classes, so that the random variables
é¢(x),x € V are independent in totality and the probability distribution is given by the relations
Pr{é(x) =1} = ¢j, ¢; € [0,1], j = 1 +m, if the vertex x belongs to the class £;, j =1 +m.

The random sets C' = {z € V : &z) = 1} are called random configurations. By definition, a
configuration has a percolation if there exists an infinite path v without self-intersections in it. If this
path starts from the vertex x, then we say that there exists a percolation from the vertex x. Denote
by Q[x|c] the probability of a percolation from the vertex x € V, i.e., the probability of existence of
an infinite path starting from the vertex x located on the set of occupied vertices.

3. The Percolation Expansion

The proof of the main theorem of this work is a consequence of a more general statement. To
formulate it, we need some preliminary constructions. We will consider any infinite graphs A(V, ®),
not necessarily periodic. On the graph A, we introduce an inhomogeneous Bernoulli random field
{é(x);x € V}, ie., the set of random variables ¢(x) labelled by vertices x € V and independent in
totality. The probability distribution of the field is defined by relations Pr{é(x) = 1} = ¢(x), where
c: V —[0,1] are probabilities of filling-in the vertices x € V.

We introduce into consideration the probability Q,[x|c| of existence of a path without self-intersec-
tions 7 starting from the vertex x and having length n on the random configuration C' = {x € V :
c(x) = 1} C V of occupied vertices of the graph A. The probability Q,[x|c| is a functional of the
distribution of concentrations c. We use the following relation for the probability of percolation:

Qlxle] = lim Qu[x|d]. (1)

Denote by 3, (x) the class of finite paths without self-intersections  of length n starting from the
vertex x. Then

Qulxle] = Pr{€ € Q: Iy C OV € Pu(x))}, Q={C:C={zeV:&z) =1}

We also introduce into consideration classes 20, of connected finite subsets of V' containing the vertex
x and such that the distance from any vertex of each of the sets, belonging to 20,, to the vertex x



does not exceed n, n € Ny. Our goal is to construct for any n € N a disjoint decomposition

Qo ={C:Ayc Oy eRax)} = |J Aulor,... 00), (2)
(01,00 s0n)
where the sets A,(o1,...,0n), belonging to the union, are defined by admissible expanding sequences
(01,...,0p) of sets 0; € W;, j = 1 +n. Admissible sequences (o1,...,0,), similarly to the sets
A(o1,...,05) of configurations, are constructed by induction on the length of the path n.

For n = 1, we define the set D; = {z € V : zpx} and a nonempty subset A; C D;. Then we
assume that o3 = Ay U {x} is a subset forming an admissible sequence (o1) of length 1.

Assume that the sequences of sets (D1, ..., Dy,) and (01, ...,0p) such that o = {x}UAU---UA,
k = 1=n, where A = op\op—1 C Dp\(DoUD1U- - -UDg_1), Do = {x}, D = {z : Ay € or—1)(2z9y)},
k = 1 +n, are constructed. The sequences (o1, ...,0,) constructed according to such principle are
said to be admissible and having the length n.

The transition to the length of the sequence (n + 1) is performed by constructing the set Dy 41 =
{z : Ay € o,)(zpy)} and by choosing a nonempty subset A, 11 C D1\ (DoUDU---UD,) such that
Api1Naoy = 0. After that, we define the set 0,11 = 0, UA, 11 and admissible sequence (o1, ...,0,11)
of length (n +1).

Now we construct decomposition (2). To each configuration C' of the Bernoulli field on A, in which
at least one path without self-intersections of length n starting from the vertex x can be embedded,
for any k < n, we put in correspondence a unique set T'y(C') C 20, of vertices that can be achieved
by the path without self-intersections v C C' of length at most k.

For each n € N and each pair of sequences (Dq,...,D,) and (01,...,0,), we define the set of
configurations

Ap(or, ... 0p) ={C 3y C Oy € Bp(x),T1(C) = ok, C N (D \ 1) = 0, k

Then, by definition, the pairs of such sets corresponding to distinct tuples (oq, ..., 0,) do not intersect,
and any configuration from Q,, belongs to one of them. Thus, the totality of sets A,(o1,...,0,) forms
a disjoint decomposition (2).

We denote P, (01,...,0,) = Pr{A,(01,...,0,)}. By (2), the following decomposition holds:

Qulxlc] = Y Ploi,...,0n). (3)

(01,00s0n)

1+n}.

Now we connect probabilities P, (o1, ..., 0,) with the probability distribution of the Bernoulli field
{¢(z);z € V'}. For each n € N, introduce the functions Q, depending on admissible tuples (o1, ..., o5).
They depend on concentrations defining the Bernoulli random field, as on parameters. The functions
Q. are defined by the relation

Qulo1, ... 00) = < 11 c(z)>< 11 (1—c(z))>, (4)

n—1
where D} = D, \ < U Dk>.
k=0

By the construction of sequences (o1,...,0,), (D1,...,D,), from the probabilistic point of view,

functions (3) are conditional probabilities of the appearance of the set I',(C') = g, for the configu-

rations C' containing paths 7 from B, (x) under the assumption that I'y(C) = o, k = 1 +n — 1.
Therefore, functions P, n € N, are defined inductively by the relation

Pn(Ol,...,On_l,On):Pn_l(Ol,...,On_l)Qn(Ol,...,On_l,On), HGN, (5)

and by the value of the probability Po(og) = Pr{é(x) = 1} = ¢(x).



Relations (4) and (5) give the expression for probabilities P,, on the basis of concentrations ¢(z),
z € V, of the field {¢(z);z € V'} and, together with (3), they form the decomposition, which we have
called the percolation decomposition.

4. The Main Theorem
Now we can state and prove the main theorem.

Theorem 4.1. For any graph A(V, ®) and any vertex x € V', the probability Q[x|c| of percolation from
x of the Bernoulli random field {¢(z);z € V'} with the probability distribution Pr{é(z) = 1} = c(z),
z € V, is a nondecreasing function with respect to each of the concentrations c(z), z € V.

Proof. Note that, according to (5), the probability Qn[x|c] can be represented by the relation

Qulxlc] =c(x) > HQkal,..., k). (6)

<017 -0 >

We differentiate the probability P,(o1,...,0,) with respect to the parameter ¢(z), z € V:

0 0 =
aC(Z)P 01,...,0 Z( Z 7"'70k)> HQJ(Oly'-'70])

=1 =1

ik
+5x,ZHQj(017'-'7Oj)' (7)

j=1

For any admissible tuple (o1,...,0y), each of the functions Qg(o1,...,0%) depends only on the pa-
rameters c(z), for which z € D}, k = 0 = n. Hence, for any fixed tuple (o1,...,0,), in sum (7), only

one summand is not equal to zero and, by (6), we can write

aCZ Z P 0'1,..., )

<017 0 ’ﬂ>

= 0
X)Z Z [m;Qk(al,...,ak)l< Z HQJ Oly..., 0

k=1{01,....,0p_1) Ohi1sms0n) J=
2€D} * ];ék

+5x,z Z H Qk(aly ceey Uk)

(1rn) =1

The proof is completed by establishing the positivity of the sum in the square bracket. Since in this
sum oy, are such that 0 # Ay = ox \ 0,1 C D}, we have for this sum, by (4),

3 %(ch))( 11 <1—c<y>>

P#£A,CDj YEAL YEDI\A
S ( 1 c<y>)< I <1—c<y>>)
ARCDy \yedp\{z} yEDI\AL
zZEA;
S (Hc<y>)< 1 <1—c<y>>) M (—c) =0
@#Ag;ch; yeAy, yEDI\(ApU{z}) yeDI\{z}
zZ Ay,

The latter identity is related to the fact that the first sum is identically equal to 1, and the second
one differs from 1 by the summand with A, = 0. d



Corollary 4.1. The probability of percolation Q[x|c| of the Bernoulli field on the periodic graph
A(V, ®) is a nondecreasing function with respect to each of the parameters c;, i = 1 +n.

Proof. By the definition of the Bernoulli field on the periodical graph, we have
0 0
a—CiQn[x|c] = > (an[xk]) > 0.

2ER;NW, YER; c(y)=cii=1+n
Therefore, Q,[x|c| is an increasing function with respect to each of the parameters ¢;, i = 1 +mn. After
that, passing to the limit as n — oo, by (1), we obtain the required statement. O

5. Conclusion

We have proved the presence of a very important property of the monotone increase with respect to
each of concentrations of the field for the probability of percolation Q[x|c| of Bernoulli random fields.
However, in our opinion, this property is not more important in itself but the method based on which
it was found, namely, the percolation decomposition (3). This decomposition allows one to find lower
bounds for the percolation threshold.
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