Role of Nonideality
of Diffusion Processes in the Formation
of Dissipative Structures

V. V. Krasilnikov and S. E. Savotchenko
Belgorod State University, Belgorod, 308015 Russia
e-mail: kras@bsu.edu.ru

Abstract—It is shown that inhomogeneity of diffusion fluxes, which modifies Fick’s law in chemical systems,
where mono- and bimolecular reactions proceed through two intermediate components, may lead to the forma-
tion of spatial structures. Their analytic description is given on the basis of an exact solution to a set of nonlinear
evolution equations. The conditions of existence are derived for time-dependent dissipative structures (limiting
cycle) in the presence of nonideality of diffusion processes in the systems being considered.

Much attention has been given to describing the
appearance of dissipative structures and nonequilib-
rium phase transitions in chemical reaction-diffusion
systems since the nonlinear dynamics of such systems
has to deal with fundamental problems [1, 2]. It should
be noted that the character of nonlinearity of evolution
equations that describe dissipative structures in the sys-
tem being considered is of importance here since it
determines the possibility of the appearance of oscilla-
tion regimes in chemical systems [3]. In [1, 4-6], it was
shown that a limiting cycle cannot arise in a two-com-
ponent system featuring two intermediate substances in
reactions governed by mono- and bimolecular mecha-
nisms. In the present study, it is shown that the presence
of inhomogeneous diffusion fluxes in such systems
may provide conditions for the appearance of a limiting
cycle.

Limiting cycles occur in known models such as the
brusselator and the Lotka—Volterra model [1, 6]. Also,
they were observed experimentally in the Belousov—
Zhabotinsky reaction [7, 8]. We note that the brussela-
tor represents a system governed by a trimolecular reac-
tion mechanism, where chemical processes are
described by equations involving a cubic nonlinearity,
which ensures the appearance of an oscillation regime,
the character of diffusion (its ideality versus nonideal-
ity) being insignificant.

In [1, 6], it was indicated that, in models where reac-
tions are governed by a mono- or a bimolecular mech-
anism, the condition necessary for the appearance of a
limiting cycle is not realized in the case of ideal diffu-
sion. In the present study, we consider nonideal diffu-

sion processes in models featuring mono- and bimolec-
ular reaction mechanisms, and this changes the situa-
tion substantially. Nonideality and inhomogeneity of
diffusion processes occurring in chemical reactions are
described by the kinetic equation for the concentration
of reactants with allowance for higher order derivatives
of the concentration [9, 10]. Terms involving deriva-
tives of order higher than 2 play the main role in creat-
ing the condition for the appearance of a limiting cycle.

It can be stated that a nonideal chemical system is
more favorable for the appearance of instabilities than
an ideal one. The effect of nonideality was analyzed in
[1, 6] for the case of nonideality of the “regular solu-
tion” model—that is, the expression for the chemical
potential was modified. In the present study, we con-
sider a different-type nonideality in a chemical system;
we refer to it by convention as the diffusion-type non-
ideality and take it into account, following [6]. In either
case, one modifies Fick’s law and, hence, diffusion
equations. However, the equations obtained in the
present study have a different structure and a different
order.

We choose the model where the chemical system
being considered is a mixture of an initial substance A,
intermediate substances X; and X,, and a final reaction
product B. We assume that the system is open to the
inflow of substances from the ambient medium that are
capable of transforming into X; and X,. We also assume
that the system being considered is in a state of
mechanical (but not thermodynamic) equilibrium in the
absence of applied fields and that processes occurring
in it are isothermal and isobaric. The concentrations of



the substances X; and X, are dependent on time and
coordinates r, while the concentrations of the sub-
stances A and B are taken to be constant.

The nonideality of diffusion can be taken into account
by moditying Fick’s law [6, 9, 10]. In order to do this,
we represent the free energy as the sum of two parts; of
these, one, fi[X;(r)] (i = 1, 2), corresponds to the free
energy of a homogeneous liquid, while the other is a free
energy that is proportional to the square of the concentra-
tion gradient VX;: f[X(r)] = flX(0)] + HVX(D)]72,
where the coefficient H > 0 characterizes the inhomo-
geneity of diffusion fluxes. In the following, we refer to
this coefficient as the inhomogeneity parameter and
assume it to be constant. The ensuing consideration will
be performed for the one-dimensional case. Assuming
that the inhomogeneity parameter takes nearly the same
value for the substances X; and X,, we represent the
densities of the corresponding diffusion fluxes j; in the
form of a modified Fick equation,

2

ji = ~Digr( X X, (1)
ox dx’

With allowance for Eq. (1), the balance equations

for the concentration in the one-dimensional case,

X, dJ;
( = —=—, assume the form
diff
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a_ll = DILD[X1]+F1(X17 XZ)
oX (2)
a_lz = DZLD[X2]+F2(X1’ XZ)’

where D, are the diffusion coefficients for an ideal
chemical system that are constant at a constant temper-
ature and the explicit expression for the differential
2 4
operator involved is L, = 8—2 - H 8—4. Within the
ox ox
model being considered, the functions F; »(X;, X,) can
be represented in the form [6]

Fi(X, X5) = agta Xy + a, X, —%X%

2
ta, X, X,+ as X5,

(3)
Fy(X,Xy) = box b1 Xp + Dy X, - 53X§
+b,X, X, +bsX;,
where a; and b; (j=1, ..., 5) are positive constants cor-

responding to the reaction rates and the concentrations
of the initial and final substances in the reaction being
studied. The signs in (3) were chosen with allowance

for the possible types of processes involved in mono-
and bimolecular reactions [5, 6].

It should be noted that one-component analogs of
the set of Egs. (2) for the case of an operator that is sim-
ilar to Ly are used in the literature to describe self-orga-
nization of dislocation ensembles in solids (see, for
example, [11]).

Suppose that stationary uniform states X (f) and X g”

defined as solutions to the set of equations F 1(X(S),

X y=0and F,(X\”, X)) = 0 are known. We further
linearize the set of Egs. (2) in the vicinity of these states
by introducing the vector Z = (Z,, Z,), where Z; = X —

X% (7= 1, 2). We then have

Z -
5 = Lz, @

where the matrix of this set of equations has the form

i = Ly+DLp Ly :%
Ly  Ly+D,L, Y 9X,

_ vl
Xj—Xj

We can readily obtain a solution to the set of Egs. (4)
in the form Z = hy(x)exp(wr), where y(x) are eigen-
functions of the operator Lp; h is a constant eigenvector
of the matrix

Ly+DA Ly ] -

A being the eigenvalues of the operator Lj; and © stands
for the eigenvalues of the matrix in (5).

Applying standard boundary conditions that corre-
spond to the vanishing of the function y(x) and its
derivative at the boundaries of the system at x = &/,
y() =y =y'()) =y' (=) =0, we find the eigenfunc-
tions and eigenvalues of the operator Ly Taking into
account the symmetry of the system with respect to the
coordinate origin, we break down the eigenfunctions
into two components, W(x) = yy(x) + y,(x), where y(x)
and w,(x) are symmetric and antisymmetric, respec-
tively. These eigenfunctions describe spatial distribu-
tions of two types.

(i) Quasiperiodic structures:

: cosl
y(x) = Cs(cosusx— COShVSlCOShVSx)’
sinl,/ (©)
Yy (x) = Ca(smuax—smh\}alsmhvax)



Here, C;, are normalization factors, while U, , =

SJU/H+ ni o I* and Vs, o =M;, J/I, where the quantities 1
are the real-valued roots of the equation

n.eothn, = —JP/H+n anJ/H+12, (D)

and the quantities n, are the real-valued roots of the
equation

n.cothn, = JZZ/H+ nicotA/lz/H+ ni. (&)

For quasiperiodic structures, the eigenvalues of the
operator Ly, are negative:

n n.
- _%‘[1 +H 2] 9)

A(Q)
I I

(ii) Aperiodic structures:

coshgy,l

= h — ———cosh ,
Ws(x) CS(COS qisX COShqzleOS q2sx)

(10)

Wa(x) = Ca(COShqlax_ zl

Here, ¢5, ,=C, J/land g5 ,= \J1/H — ?;i J1*, where the

quantities {, are the real-valued roots of the equation

Ctanhl, = JI/H - Ctanh J/H-C. (1)

and the quantities {, are the real-valued roots of the
equation

C,cothl, = JPIH = Ceoth JITH-C2. (12)

Concurrently, the real-valued roots of Egs. (11) and
(12) must satisfy the condition —//H < { , < I/H; under
this condition, the eigenvalues of the operator Lj for
aperiodic structures (10) are positive:

2 2
C%“ 1—HC2“ .
) !

For ideal diffusion processes (corresponding to H =
0), aperiodic structures (10) do not arise, while the qua-
siperiodic structures reduce to single-component peri-
odic structures. Thus, the formation of the above inho-
mogeneous spatial structures is due exclusively to the
inhomogeneity of diffusion fluxes in a chemical reac-
tion.

For time-dependent dissipative structures to be
formed in a chemical system, the diagonal elements of

(ny _
7\’5, a =

(13)

the matrix in (5) must have opposite signs (inizz <0).
In a system featuring ideal diffusion (H = 0) (see [6]),
the operator L;, reduces to the operator d%/dx?, which

has only negative eigenvalues, A = —ki , where k, takes

discrete values whose explicit form is determined by /
and by the type of boundary conditions. In this case, the
diagonal matrix elements for an ideal two-component
system featuring the mono- and bimolecular reaction

mechanisms satisfy the inequalities L = Ly -
D,k. <0and Ly =-L,,|-D,k. <0, whence it follows

that L1125, >0, and this proves the impossibility of the
formation of dissipative structures in the case of ideal
diffusion in the chemical system being considered.

The situation changes radically if nonideal diffusion
processes are present in a chemical system (that is, H #
0). In this case, aperiodic structures (10), for which the
eigenvalues given by Eq. (13) are positive, are compat-

ible with the condition L1L. < 0, since we now have

2411 = —|L11| + DIQ\,E:Z‘)I aIld 2422 = —|L22| + szgi . The
condition under which a limiting cycle arises may be
realized in two cases:

() L1, >0and Ly <0 if the possible values of the

L
eigenvalues in (13) satisfy the inequalities |D—H| <
1
w _ Lol |
Ao < D,

(i) Li1 < 0 and L > 0, whence it follows that
L n L
|2 <A <—| “|.
D, ' D,

Thus, the condition necessary for the existence of
dissipative structures, including a limiting cycle, can be
satisfied in a two-component system featuring mono-
and bimolecular reaction mechanisms.

In the present study, it has only been proven that the
necessary condition for the existence of dissipative
structures in the class of chemical systems governed by
mono- and bimolecular reaction mechanisms can in
principle be realized owing to inhomogeneity of diffu-
sion processes. In order to formulate a sufficient condi-
tion in this class of chemical systems, it is necessary to
solve the respective full nonlinear problem, but this can
be done only by means of numerical or approximate
methods.
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