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A general treatment has been developed for the multicomponent one-dimensional non-covalent molec-
ular hetero-assembly in solution using transfer matrix and sequence generating function approaches. The
main result is set of equations, which allows one to obtain any thermodynamical quantities of the mul-
ticomponent system and, in particular, experimental observable enabling one to get all equilibrium
parameters of molecular interaction. The matrix form of presentation of the key equations allows their
direct incorporation into matrix-oriented mathematical software, which leads to a two orders of magni-
tude increase in speed of calculation of as compared to other known approaches.
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1. Introduction

Non-covalent hetero-assembly of small molecules in solution is
currently attracting great attention due to extensive use of this
phenomenon in molecular electronics [1–3], laser physics [4,5],
supramolecular chemistry [2,6–9], advanced materials [10–13],
numerous biochemical applications [2,14,15] etc. The key feature
of this process is the formation of nanoscale aggregates, which
modify the macroscopic physical properties of solute resulting in
outcomes of practical importance ranging from discovering of
new perspective materials to treatment of human diseases [16].

The most well-known partial cases of such aggregations are
one-dimensional, one-component self-assembly (see Refs. [9,17]
for review) and two-component hetero-assembly (see Refs. [8,18]
for review) leading to formation of aggregates, containing one type
or two different types of molecules, respectively, ordered along a
certain axis. Recently, a focus has been given to assemblies con-
taining higher numbers of different molecules (multicomponent
hetero-assembly) and direct applications of such approaches have
been reported in different fields of chemical science. For instance,
the hetero-assembly process can significantly improve the solubil-
ity of hydrophobic drugs [19,20]. It has also appeared to be useful
for creation of various supramolecular structures [21,22] as well as
for regulation of medico-biological activity of drugs controlled by
an investigator [23].

Although the set of physical laws and commonly introduced ba-
sic assumptions behind the description of multicomponent hetero-
assembly makes such systems relatively clear in terms of analysis,
there are two difficulties which need to be faced when dealing with
molecular aggregation:

(i) setting up a link to the experimental observables, and
(ii) correct treatment of so-called ‘reflected’ complexes, i.e.

physically identical non-symmetric complexes, resulting
from infinite summation necessary to account for all possi-
ble types of complexes able to form in solution (for more dis-
cussion of the problem see Refs. [18,24]). An exception is in
special cases of intermolecular assembly [9,22] or in account
for cooperative effects [9].

Both difficulties have long been overcome for one-component
self-assembly (reviewed in Ref. [17]) and have recently been
overcome for two-component hetero-assembly [24]. The closest
approaches to similar solutions for multicomponent systems have
been suggested using the algorithmic approach [25], transfer
matrix formalism [22] and sequence generating function formal-
ism [26]. However, these solutions are all incomplete, viz. the algo-
rithmic approach [25] is limited by the finite lengths of aggregates,
the transfer matrix approach [22] does not treat ‘reflected’ com-
plexes at all and therefore considers experimental observable
incorrectly and the sequence generating function approach [26]
fully accounts for the ‘reflected’ complexes but does not provide
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a link to experimental observables. In the present work we provide
a general treatment of the multicomponent one-dimensional
molecular hetero-assembly in solution which fully accounts for
the two aforementioned difficulties. The treatment uses various
standard statistical-thermodynamical approaches which yield
identical outcomes and which reduces to all major known partial
cases previously described in literature.

2. Results and discussion

2.1. General approach to the treatment of the multicomponent hetero-
assembly

Three basic statistical-thermodynamical approaches have so far
been used in the literature for treating multicomponent systems
and accounting for all possible types of molecular complexes in
solution, viz. algebraic (or combinatorial), transfer matrix (TM)
and sequence generating function (SGF) approaches. All are based
on a similar set of physical assumptions [24]: the mass conserva-
tion law, the law of mass action and the independence of the equi-
librium constant on the number of molecules in an aggregate (i.e.
non-cooperativity). The algebraic approach [18], which is based
on explicit treatment of all possible molecular complexes in solu-
tion, is inefficient for systems with more than two components
and will not be used in the present work.

The basic idea of the TM and SGF approaches (recently reviewed
in Ref. [27]) is a derivation of the partition function, Zn, of linear
aggregates (or linear lattice made of n cells) containing n molecules
of N different types (to be further referred to as n-mer aggregate).
The general form of Zn can be given as [28]:

Zn ¼ uWn�2vT; ð1Þ

where the elements of N � N matrix, W, and 1� N vectors, u and v,
depend on selection of a particular model [28]. In addition, the u
and v vectors define the ends of growing aggregates.

The difference between TM and SGF approaches is basically the
way in which the W matrix is filled, i.e. whether the cells of the
matrix contain probabilities or statistical weights (TM, for instance,
see Ref. [22]), or partition functions of oligomers made of single-
type molecules (SGF, for instance, see Ref. [26]).

The specificity of the hetero-assembly of small molecules (un-
like, for example, well-developed lattice models, reviewed in Ref.
[27]) is the possibility of formally infinite aggregation resulting
in a requirement to take into consideration the distribution of all
possible types of molecular complexes ranging from unity (mono-
mer) to infinity. In such a case the grand partition function, N, of
the N-component system taking into account all possible types of
complexes can be obtained via summation of the partition func-
tions (1) over all natural n:

N ¼
X1
n¼1

Zn: ð2Þ

The main goal of further application of N to a particular system is
the description of experimental concentration (or temperature)
dependences of certain experimental observable, n (e.g. molecular
absorption in spectrophotometry, heat effect in calorimetry, chem-
ical shift in NMR), which enables one to obtain the equilibrium con-
stants (or other thermodynamical parameters) of hetero-assembly,
Kij, between i- and j-type molecules, and other parameters, for in-
stance, observable parameter, nij, of i-type molecule being in stack
with j-type molecule. Once these quantities are known, the distri-
bution of molecular aggregates in solution is considered to be fully
determined. Such a link between equilibrium parameters and
experimental observations has been used in the majority of models
of molecular hetero-assembly, cited in the introductory section. In
the present study we shall also follow this strategy.
2.2. Derivation of the grand partition function using the TM approach

Let us introduce the statistical weight, KijCj, of the j-type mole-
cule being in a hetero-stack with i-type molecule within an aggre-
gate. These quantities arranged in the N � N matrix form give a
transfer matrix, M:

M ¼

K11C1 K12C2 � � � K1NCN

K21C1 K22C2 � � � K2NCN

..

. ..
. . .

. ..
.

KN1C1 KN2C2 � � � KNNCN

0
BBBB@

1
CCCCA; ð3Þ

which bears the same meaning as W in Eq. (1).
Raising M to the power of n� 1 enables one to enumerate all

possible arrangements of n molecules of N different types within
an n-mer aggregate. Hence, according to Eq. (1) the partition func-
tion of an n-mer aggregate takes the form:

Zn ¼ cMn�11T; ð4Þ

where the vectors, c ¼ ðC1 C2 . . . CN Þ and 1 ¼ ð1 1 . . . 1 Þ,
correspond to vectors u and v in Eq. (1), respectively.

Eq. (4) along with Eq. (2) can be further used in order to derive
the grand partition function of the N-component hetero-assembly
system:

N ¼
X1
n¼1

Zn ¼
X1
n¼1

cMn�11T ¼ cðI�MÞ�11T; ð5Þ

where I is the N � N unity matrix. Infinite summation in Eq. (5) takes
place only if the spectral radius of M by absolute value is less than
unity. However, this condition is always valid if the monomer con-
centrations in c are determined from the mass conservation law, act-
ing as a physical constraint for the infinite geometric series in Eq. (5).

The grand partition function (5) includes statistical weights of
all possible complexes formed in solution, i.e. accounts for all pos-
sible arrangements of molecules of different types. The whole set
of possible complexes also includes the pairs of mirror symmetrical
complexes (for example, complexes of CjKjiCiKiiCi and CiKiiCiKijCj

type) which have been previously denoted as ‘reflected’ complexes
[18,24,25]. They become physically indistinguishable under the
condition Kij ¼ Kji, which is the case most frequently met in
one-dimensional hetero-assembly in solution (account of the
distinguishability, Kij–Kji, was accomplished in Ref. [29] for two-
component systems and is dependent on specific features of
complexation of the i-th and j-th molecules). For that reason, we
shall evaluate the grand partition function for the case of indistin-
guishable ‘reflected’ complexes.

Considering that the ‘reflected’ complexes are physically equiv-
alent, the grand partition function (5) may be corrected by analogy
to that previously reported for two-component systems [18,24]

Ncorr ¼
Nþ Nsymm

2
; ð6Þ

where Nsymm is the partition function of symmetrical with respect to
their geometrical centre complexes (for instance, complexes of
CjKjiCiKiiCiKijCj or CiKijCjKjiCi type).

In order to derive Nsymm let us introduce supplementary
matrices

MS¼

K11C1 0 � � � 0
0 K22C2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � KNNCN

0
BBBB@

1
CCCCA; Md¼M�M¼

K2
11C2

1 K2
12C2

2 � � � K2
1NC2

N

K2
21C2

1 K2
22C2

2 � � � K2
2NC2

N

..

. ..
. . .

. ..
.

K2
N1C2

1 K2
N2C2

2 � � � K2
NNC2

N

0
BBBBB@

1
CCCCCA;

ð7Þ

where sign ‘�’ denotes Hadamard product yielding element-wise
matrix multiplication [30]. Raising Md to the power of n� 1 enables
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one to derive the partition functions of the two ‘halves’ of symmet-
rical complexes with total length 2ðn� 1Þ. Taking into account that
in the centre of symmetry may sit a monomer or a homo-dimer of
molecules of certain type, the partition function of an n-mer, cor-
rected for the ‘reflected’ complexes, takes the form:

Zn;symm ¼ cMn�1
d 1T þ cMSMn�1

d 1T ¼ cðIþMSÞMn�1
d 1T: ð8Þ

In Eq. (8) vector c (or cMS) acts as a vector of statistical weights of
the central monomer (or dimer) of the symmetrical complex. Sum-
mation of Eq. (8) over n gives the partition function of the symmet-
rical complexes:

Nsymm ¼
X1
n¼1

Zn;symm ¼
X1
n¼1

cðIþMSÞMn�1
d 1T

¼ cðIþMSÞðI�MdÞ�11T: ð9Þ

Finally, substituting Eqs. (5) and (9) into Eq. (6) enables one to de-
rive the fully corrected grand partition function of the N-component
hetero-assembly system:

Ncorr ¼
1
2

cððI�MÞ�1 þ ðIþMSÞðI�MdÞ�1Þ1T: ð10Þ
2.3. Derivation of the grand partition function using the SGF approach

The SGF approach, originally proposed by Lifson [31] and then
fully reviewed for chain polymers in Ref. [32], is based on represen-
tation of an n-mer by sub-chains containing elements of a single
type. The sub-chains are given by corresponding sequence-gener-
ating functions. In the context of the n-mer aggregates in the pres-
ent work, the Lifson’s sub-chains are homo-aggregates made of
single-type molecules, and the Lifson sequence generating func-
tions are the partition functions of these homo-aggregates. Re-
cently, the full derivation of the grand partition function for the
N-component system corrected for ‘reflected’ complexes has been
performed [26]. We provide a brief re-derivation of the Ncorr quan-
tity compliant with the set of notations used throughout the pres-
ent work.

The statistical weight of a homo-aggregate, containing k mole-
cules of type j, can be written as

fjðkÞ ¼ CjðKjjCjÞk�1: ð11Þ

Hence, the sequence generating function for homo-aggregates of
any length from unity to infinity made of j-type molecules are given
as

cj ¼
X1
k¼1

fjðkÞ ¼ Cj

X1
k¼1

ðKjjCjÞk�1 ¼ Cj

1� KjjCj
: ð12Þ

The quantities Kijcj arranged in a form of a N � N matrix give ma-
trix, G, which is analogous to matrix W in Eq. (1):

G ¼

0 K12c2 K13c3 � � � K1NcN

K21c1 0 K23c3 � � � K2NcN

K31c1 K32c2 0 � � � K3NcN

..

. ..
. ..

. . .
. ..

.

KN1c1 KN2c2 KN3c3 � � � 0

0
BBBBBBB@

1
CCCCCCCA
: ð13Þ

Zeros on the principal diagonal appear as a result of merging
two neighbouring homo-aggregates into a single aggregate, which
means that expression of Kjjcj type does not bear meaning within
the context of the SGF method.

Let us introduce vector c, containing sequence generating func-
tions of homo-aggregates, which may be located on the edge of an
n-mer:
c ¼ c1 c2 c3 � � � cNð Þ: ð14Þ

Hence, the expression cGp�11T represents the sum of partition func-
tions of all possible p homo-aggregates arranged sequentially. It fol-
lows that the grand partition function taking into account all
combinations of homo-aggregates within all possible complexes
can be written as

N ¼
X1
p¼1

cGp�11T ¼ cðI� GÞ�11T: ð15Þ

Eq. (15) is similar to that derived in Ref. [21] (Eq. (13)) with re-
spect to ligand binding to linear lattice (except that Eq. (13) con-
tains an additional term 1 standing for the contribution of free
from ligand binding sites on the lattice) which is a consequence
of similarity in basic approach used to derive partition functions
in these two works.

Eq. (15) contains the same weakness as discussed above with
respect to Eq. (5), i.e. overestimation of the ‘reflected’ complexes.
Correction of Eq. (15) can be accomplished following the same ap-
proach used above to correct N in TM formalism and based on Eq.
(6).

The statistical weight of symmetrical homo-aggregates located
on both ends of an n-mer has the form

fð2Þj ðkÞ ¼ C2
j ðK

2
jjC

2
j Þ

k�1
: ð16Þ

Hence, the sequence generating function of two ‘halves’ of the sym-
metrical complexes can be written as

cð2Þj ¼
X1
k¼1

fð2Þj ðkÞ ¼ C2
j

X1
k¼1

ðK2
jjC

2
j Þ

k�1 ¼
C2

j

1� K2
jjC

2
j

: ð17Þ

Any symmetrical complex may contain only odd number of
homo-aggregates. It follows that one of them will always sit in
the centre of an n-mer. Employing the vector c in Eq. (14) in order
to represent this central homo-aggregate, and introducing matrix
Gd as

Gd ¼

0 K2
12c

ð2Þ
2 K2

13c
ð2Þ
3 � � � K2

1Nc
ð2Þ
N

K2
21c

ð2Þ
1 0 K2

23c
ð2Þ
3 � � � K2

2Nc
ð2Þ
N

K2
31c

ð2Þ
1 K2

32c
ð2Þ
2 0 � � � K2

3Nc
ð2Þ
N

..

. ..
. ..

. . .
. ..

.

K2
N1c

ð2Þ
1 K2

N2c
ð2Þ
2 K2

N3c
ð2Þ
3 � � � 0

0
BBBBBBBB@

1
CCCCCCCCA
; ð18Þ

it is possible to derive the corrected partition function for the sym-
metrical complexes:

Nsymm ¼
X1
p¼1

cGp�1
d 1T ¼ cðI� GdÞ�11T: ð19Þ

Substituting Eqs. (15) and (19) into Eq. (6) the fully corrected grand
partition function for the N-component hetero-assembly system
can be obtained as:

Ncorr ¼
1
2
c½ðI� GÞ�1 þ ðI� GdÞ�1�1T: ð20Þ
2.4. Comparison of the grand partition functions derived using the TM
and SGF approaches

Let us show that the grand partition functions, Ncorr, derived
using the TM (Eq. (10)) and SGF (Eq. (20)) approaches are identical.
In order for this to be accomplished it is necessary to introduce
supplementary matrix objects, which will also be used later to de-
rive the experimental observables:
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K ¼

K11 K12 � � � K1N

K21 K22 � � � K2N

..

. ..
. . .

. ..
.

KN1 KN2 � � � KNN

0
BBBB@

1
CCCCA; DC ¼

C1 0 � � � 0
0 C2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � CN

0
BBBB@

1
CCCCA: ð21Þ

As shown in Appendix A, incorporation of these objects into Eqs.
(10) and (20) results in two identical equations for Ncorr suggesting
full equivalence of TM and SGF approaches in the description of
molecular hetero-assembly in N-component systems.

Once the Ncorr is obtained, further derivation of the equilibrium
parameters of molecular interaction in solution is based on appli-
cation of partition function formalism is already not linked rather
than the TM or SGF approaches. The key specificity in application
of the partition function formalism to the N-component system
with respect to that published by other authors is the need to
use general differentiation of scalar function by matrix. We shall
derive all necessary equations enabling one to set up a link be-
tween experimental observable and molecular equilibrium in solu-
tion with the aid of Ncorr obtained above using the TM approach
(Eq. (10)) which is more convenient than the SGF approach for di-
rect implementation in matrix-oriented mathematical software.

2.5. Derivation of an equation for the mass conservation law

The total concentrations of all types of molecules in solution,
C0i, are commonly known in experiments and therefore can be
used as a constraint in obtaining equilibrium parameters of molec-
ular complexations from experimental titration curves. The total
concentrations, C0i, can be found by differentiation of the grand
partition function (10) by the natural logarithm of the correspond-
ing monomer concentration, Ci [24,33]. In general matrix formula-
tion this procedure can be written as differentiation of a scalar
function by a matrix:

DT ¼
@Ncorr

@~DC
; ð22Þ

where DT and ~DC are diagonal N � N matrices which contain C0i and
ln Ci elements on their principal diagonals, respectively.

Evaluation of Eq. (22) to closed analytical form is given in
Appendix B; the end result is

DT¼
1
2
ðI�MÞ�11T1DCðI�MÞ�1þðI�MdÞ�11T1DCðIþ2MSþMdÞðI�MdÞ�1
h i

:

ð23Þ
2.6. Derivation of an equation for the experimental observables

In the majority of known models describing multicomponent
complexations of small molecules, the experimental observable,
n0i (molecular absorption in spectrophotometry, heat effect in cal-
orimetry, chemical shift in NMR etc.) of molecules of the ith type is
represented as an additive quantity (for example, see Refs. [17–
20,22–26]), which can be obtained by the averaging of particular
observables, nðsÞi , over all s types of complexes (including mono-
mers) with respect to their amounts in solution, i.e. mole fractions,
f ðsÞi :

n0i ¼
X

s

nðsÞi f ðsÞi ; ð24Þ

Expansion of Eq. (24) yields

n0i ¼
X

s

nðsÞi f ðsÞi ¼ nðmÞi f ðmÞi þ
X
s–m

nðsÞi f ðsÞi ¼ nðmÞi �
X
s–m

DnðsÞi f ðsÞi ; ð25Þ

where nðmÞi is the experimental observable of the i-type molecule in
the monomer state; DnðsÞi ¼ nðmÞi � nðsÞi .
Another assumption commonly used in analysis of a one-
dimensional assembly is the approximation of ‘nearest neighbour’,
which considers that only the nearest molecules (in direct contact
with the i-type molecule in a complex) influence the n0i of that
molecule (for example, see Refs. [17,18,22,24]). Within the frame-
work of a one-dimensional hetero-assembly two possibilities exist,
viz. (i) only one of the nearest neighbours affects n0i (used, for
example, in Ref. [22] and usually termed ‘head-to-tail’ or ‘head-
to-head’-type aggregation), and (ii) both nearest neighbours affect
n0i (used, for example, in Refs. [17,18,24] and usually termed ‘sand-
wich’-type aggregation). In order to distinguish these cases let us
introduce the parameter t 2 1;2 which is the number of neigh-
bours affecting the experimental observable of given molecule.
Let nij be the experimental observable of an i-type molecule in con-
tact with a j-type molecule (following definitions formulated in
Ref. [24] at i ¼ j it is a homo-stack and at i–j it is a hetero-stack).
Due to the ‘nearest neighbour’ approximation one represents nðsÞi

in Eq. (25) as a particular combination of nðmÞi and nij [18]. Hence,
the experimental observable in Eq. (25) can be written in a more
definite form

n0i ¼ nðmÞi � t
2

XN

j¼1

Dnijf
ðdÞ
ij þ

XN

j¼1

Dnijf
ðdÞ
ji

 !
; ð26Þ

where Dnij ¼ nðmÞi � nij; quantities f ðdÞij and f ðdÞji are the mole fractions
of i-j and j-i stacks, respectively. They can be expressed via the total
concentrations, Sij and Sji, of these stacks as f ðdÞij ¼

Sij

C0i
and f ðdÞji ¼

Sji

C0i
,

which, in their turn, can be directly obtained from the grand parti-
tion function [24,33]:

Sij ¼
@Ncorr

@ ln Kij
;

Sji ¼
@Ncorr

@ ln Kji
: ð27Þ

Taking into account the symmetry of any stack with respect to
interchange of i and j, i.e. Kij ¼ Kji, Eq. (26) can be rewritten as

n0i ¼ nðmÞi � t
C0i

XN

j¼1

DnijSji: ð28Þ

Further generalisation of Eq. (28) in matrix form requires intro-
duction of the following matrix objects:

nm ¼

nm1 . . . nm1

..

. ..
.

nmN � � � nmN

0
BB@

1
CCA; n ¼

n11 � � � n1N

..

. . .
. ..

.

nN1 � � � nNN

0
BB@

1
CCA; S ¼ @Ncorr

@ ~K
;

ð29Þ

where ~K is the N � N matrix containing natural logarithms of corre-
sponding elements of matrix K. Now Eq. (28) can be rewritten as

n0i ¼ 1inm1T
i � t1iD

�1
T ðnm � nÞS1T

i ; ð30Þ

where 1i is the 1� N vector which contains zeros excepting unity in
ith position. As the left side of Eq. (30) is equal to the ith element on
principal diagonal of an arbitrary N � N matrix, the full set of Eq.
(30) can be readily generalised into the matrix form

n0 ¼ nm � tD�1
T ðnm � nÞS; ð31Þ

where n0 is the N � N matrix, which contains the experimental
observables of molecules of all types on its principal diagonal. The
explicit form of matrix S is derived in Appendix C.

Eqs. (23) and (31) provide a complete solution of the problem of
non-cooperative molecular hetero-assembly in N-component
systems.
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2.7. Utilisation of the derived equations

The matrix form of presentation of the key Eqs. (10), (23) and
(31) of the N-component model of hetero-assembly developed in
the present work allows their direct incorporation into matrix-ori-
ented mathematical software, such as, for example, MATLAB. The
use of such equations in the description of experimental data
may follow the standard algorithm reviewed in Refs. [24,25] and
currently being used by many authors in applications concerning
molecular assembly. We shall briefly describe this algorithm with-
out going into its details.

The input data are matrix n0 of the experimental observables,
matrix of total concentrations DT, and the equilibrium parameters
of self-assembly of each of N types of molecules commonly known
from independent studies in one-component solution (i.e. the
parameters Kii and nii on the principal diagonal of matrices K and
n, respectively). The unknown quantities are the equilibrium
parameters of hetero-assembly (i.e. Kij and nij in matrices K and
n, respectively). Their search is accomplished by minimization of
the discrepancy between experimental n0 and theoretically calcu-
lated n0 from Eq. (31). Inside the minimization cycle the solution
of Eq. (23) is performed with respect to matrix DC (or vector c).

The listing of program code designed for use in MATLAB
software along with brief explanation of how it works are given
in Supplementary Material. The validation of Eqs. (23) and (31)
and the program code have been performed using 1H NMR data
for three-component (N ¼ 3 and t ¼ 2) hetero-association of the
antibiotics novatrone and daunomycin with caffeine published in
Ref. [25]. The output results given in Supplementary Material were
compared against the N-STOCH algorithmic model [25], which is
the only approach available in the literature that provides a solu-
tion of the N-component hetero-assembly and allows comparison
with the model developed in the present work. The calculated
magnitudes of Kij and nij became identical starting from the maxi-
mum lengths of complexes L ¼ 10 (the key limitation of the N-
STOCH approach [25]). Under such a limitation the overall time
of computation using N-STOCH amounted to few hours whereas,
with the model developed above, it has the order of several
minutes. This result proves the apparent superiority of the N-com-
ponent model developed in the present work.

It should be noted, however, that the present model is only
applicable to cases of non-cooperative hetero-assembly. If cooper-
ativity of one-dimensional hetero-assembly is involved, such mod-
els as the N-STOCH approach or the models from Refs. [8,9] are still
the alternative. Nevertheless a potential possibility to introduce
cooperativity of hetero-assembly into the equations of the model
developed in the present work seems real and is a matter of further
publication. For instance, a first step in such analysis could be the
modification of the grand partition functions (10) and (20) with an
aim to account for fundamental anticooperativity of one-dimen-
sional assembly in a way recently accomplished with respect to
self-association in Ref. [34].

The use of matrix equations, obtained in the present work, is
not limited to the search for equilibrium parameters of complexa-
tion. Knowledge of the grand partition function (Eq. (10)) provides
a link to any thermodynamical quantity of the N-component
system.
2.8. Reduction of derived equations to partial cases known from the
literature

The N-component model, developed in Ref. [22], does not take
into account the ‘reflected’ complexes and therefore provides
incorrect equations for the observable parameter. Excluding terms
related to ‘reflected’ complexes in Eq. (23) and then taking trace of
DT one obtains cðI�MÞ�21T, which is identical to that derived in
Ref. [22].

The two-component model developed in Ref. [24] can be
obtained from Eqs. (23) and (31) by reduction of all matrices to
2� 2 dimension and further element-wise writing down of the ob-
servable parameter at t ¼ 2.

The N-component model developed in Ref. [26] provides full
account of the ‘reflected’ complexes but does not report any link
to observable parameter and does not provide a formula for the
mass conservation law in close analytical form. As noted in subsec-
tion C the author of Ref. [26] used the SGF method to derive the
grand partition function which leads to Ncorr identical to Eq. (20)
when written in matrix form.

One-component self-association is a trivial case of molecular
assembly. Eqs. (23) and (31) at N ¼ 1 and t ¼ 2 reduce to the
well-known equations for the mass conservation law and observa-
ble parameters in Ref. [17].

A special case of molecular hetero-assembly is used when one
of the components (for instance, i-type) is in such small concentra-
tions that it is assumed to exist only as a monomer in solution as
free molecules or in a hetero-complex with other j-type molecules
(i – j) aggregating without any restrictions (see, for example, Refs.
[35,36]). Partial derivative of Ncorr with respect to the monomer
concentration Ci at Ci ¼ 0 extracts from Ncorr all terms related to
complexes containing i-type monomer, whereas the value of Ncorr

at Ci ¼ 0 gives the part of Ncorr not containing the i-type monomer.
It follows that the grand partition function Nð1Þcorr of the N-compo-
nent system, in which the i-type molecules exist as monomer in
either uncomplexed or complexed with other molecules state,
takes the form

Nð1Þcorr ¼ NcorrjCi¼0 þ Ci
@Ncorr

@Ci

����
Ci¼0

: ð32Þ

Substitution of Eq. (10) into Eq. (32) at N ¼ 2 and N ¼ 3 enables
one to get Nð1Þcorr identical to those derived in Refs. [35,36]. Detailed
derivation of the grand partition function for above-mentioned
case is outlined in Appendix D.
3. Conclusion

In the present work we provide a general treatment of the
N-component one-dimensional molecular hetero-assembly in
solution using various standard statistical-thermodynamical ap-
proaches with further reduction to all major partial cases described
in literature. The main outcome is set of Eqs. (10), (23) and (31)
which provide links to any thermodynamical quantities of the
N-component system and to the experimental observable enabling
the determination of all the equilibrium parameters of molecular
complexation. The presentation of the key equations in matrix
form allows their direct incorporation into matrix-oriented math-
ematical software, such as, for example, MATLAB, leading to in-
crease both in speed and accuracy of calculations compared to
solving a similar task by the algorithmic approach [25].

The matrix model along with the program code developed in
the present work, provide a tool for quantitative investigation of
a wide set of possible non-cooperative one-dimensional assem-
blies in N-component mixtures of interacting compounds. Several
classes of practically-important interactions can be described
within the framework of the matrix model, such as the aggregation
of small aromatic molecules [17], multicomponent hydrogen-
bonded linear supramolecular polymerizations [22], drug-hydro-
trope interactions [20] etc. The next step in the development of
the model would be the introduction of cooperativity of hetero-
assembly, which is a matter of further publication.
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Appendix A. Comparison of the grand partition functions
derived using TM and SGF approaches

Matrix K in Eq. (21) can be decomposed as the sum of two
matrices, K ¼ Kh þ KS, where

Kh ¼

0 K12 � � � K1N

K21 0 � � � K2N

..

. ..
. . .

. ..
.

KN1 KN2 � � � 0

0
BBBB@

1
CCCCA; KS ¼

K11 0 � � � 0
0 K22 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � KNN

0
BBBB@

1
CCCCA:

Introducing one more object,

Kd ¼ KT � K ¼ K � K; ðA1Þ

it is now possible to rewrite the matrices used in derivation of Ncorr

in the TM approach, viz.

c ¼ 1DC; M ¼ KDC;Md ¼ ðKTDCÞ � ðKDCÞ ¼ KdD2
C;

MS ¼ KSDC: ðA2Þ

Substituting Eqs. (A2) into Eq. (10), the Ncorr in TM approach
takes the form:

Ncorr ¼
1
2

1 ðD�1
C � KÞ�1 þ ðD�1

C þ KSÞðD�2
C � KdÞ

�1
h i

1T: ðA3Þ

In order to accomplish transformation of Ncorr in the SGF ap-
proach, it is necessary to introduce supplementary objects:

Dc ¼

c1 0 � � � 0
0 c2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � cN

0
BBBB@

1
CCCCA; Dð2Þc ¼

cð2Þ1 0 � � � 0

0 cð2Þ2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � cð2ÞN

0
BBBBB@

1
CCCCCA;

which allows one to rewrite formally defined matrices as c ¼ 1Dc,
G ¼ KhDc, Gd ¼ ðKd � K2

SÞD
ð2Þ
c .

Hence, Eq. (20) takes the form

Ncorr ¼
1
2

1 ðD�1
c � KhÞ

�1 þ ðD�1
c � ðKd � K2

SÞD
ð2Þ
c D�1

c Þ
�1

h i
1T: ðA4Þ

It is now easy to show that

Dc ¼ DCðI� KSDCÞ�1 ¼ ðD�1
C � KSÞ

�1 ðA5Þ

and

Dð2Þc ¼ DCðIþ KSDCÞ�1DCðI� KSDCÞ�1

¼ ðD�1
C þ KSÞ

�1ðD�1
C � KSÞ

�1
: ðA6Þ

Substituting Eqs. (A5) and (A6) into Eq. (A4), and making neces-
sary transformations, one gets an equation identical to Eq. (A3):

Ncorr¼
1
2

1 ðD�1
C �KS�KhÞ

�1þ D�1
C �KS�ðKd�K2

SÞ D�1
C þKS

� ��1
� ��1

� �
1T

¼1
2

1 ðD�1
C �KÞ�1þðD�1

C þKSÞððD�1
C �KSÞðD�1

C þKSÞ�ðKd�K2
SÞÞ
�1h i

1T

¼1
2

1 ðD�1
C �KÞ�1þðD�1

C þKSÞðD�2
C �KdÞ

�1
h i

1T:

ðA7Þ
Appendix B. Derivation of matrix DT

In general the grand partition function (10) can be represented
as
Ncorr ¼
1
2

1F1T; ðB1Þ

where F ¼ FðDC;K;KS;KdÞ is a matrix function of independent ma-
trix arguments, DC, K, KS, Kd. Within this work one has to find the
closed form of partial derivatives of the grand partition function
(B1) with respect to ~DC and ~K, which are N � N matrices containing
natural logarithms of corresponding elements of DC and K, respec-
tively. For instance, the partial derivative of Ncorr with respect to
~DC can be written as follows:

@Ncorr

@~DC
¼ 1

2
@1
@~DC

F1T þ 1
@F
@~DC

1T þ 1F
@1T

@~DC

 !
:

Derivatives @1
@~DC

and @1T

@~DC
when multiplied by vectors F1T and 1F,

respectively, yield N � N zero matrices. Hence,

@Ncorr

@~DC
¼ 1

2
1
@F
@~DC

1T: ðB2Þ

Let us expand Eq. (B2) according to Eqs. (22) and (A2):

DT ¼
1
2

1

ðI� DCKÞ�1 @DC
@~DC
ðI� KDCÞ�1 � D�1

C
@DC
@~DC

DCðI� KdD2
CÞ
�1

þðIþ KSDCÞðI� KdD2
CÞ
�1 @DC

@~DC
ðI� KdD2

CÞ
�1

D�1
C ðIþ KSDCÞðI� D2

CKdÞ
�1 @DC

@~DC
DCðI� KdD2

CÞ
�1

2
66664

3
777751T:

ðB3Þ

Actually Eq. (B3) is a sum of matrix products a @DC
@~DC

bT, where a, b
are certain 1� N vectors. Consider this term in more detail:

a
@DC

@~DC
bT ¼

XN

i¼1

XN

j¼1

ai
@kDCkij

@~DC
bj ¼

XN

i¼1

ai1
T
i 1ibikDCkii

¼ ðaTbÞ � DC: ðB4Þ

Thus Eq. (B4) enables one to rewrite Eq. (B3) in the following
form:

DT ¼
1
2

ðI� KDCÞ�11T1ðI� DCKÞ�1

þðI� KdD2
CÞ
�1

1T1DCðIþ KSDCÞðI� KdD2
CÞ
�1

D�1
C

þDCðI� KdD2
CÞ
�1

1T1DCðKSDC þ KdD2
CÞðI� KdD2

CÞ
�1

D�2
C

2
664

3
775 � DC

ðB5Þ

Here one took into account the invariance of DT under transpo-
sition. As physically meaning elements of DT are only elements on
the principal diagonal, Eq. (B5) takes the final form

DT¼
1
2
ðI�MÞ�11T1DCðI�MÞ�1þðI�MdÞ�11T1DCðIþ2MSþMdÞðI�MdÞ�1
h i

:

ðB6Þ
Appendix C. Derivation of matrix S

Derivation of matrix S is similar to derivation of matrix DT de-
scribed in Appendix B as it consists of partial derivatives

@Ncorr

@ ~K
¼ 1

2
1
@F
@ ~K

1T

in terms of Appendix B. Expand Eq. (C1) accounting for Eq. (29) as it
was accomplished above:

S ¼ 1
2

1
ðD�1

C � KÞ�1 @K
@ ~K
ðD�1

C � KÞ�1 þ @KS
@~K
ðD�2

C � KdÞ
�1

þðD�1
C þ KSÞðD�2

C � KdÞ
�1 @Kd

@ ~K
ðD�2

C � KdÞ
�1

2
4

3
51T: ðC1Þ

It is now necessary to define partial derivatives in Eq. (C1) tak-
ing Eq. (B4) as an example:
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a@K
@ ~K

bT¼
XN

i¼1

XN

j¼1

ai
@Kij

@ ~K
bj¼

XN

i¼1

XN

j¼1

ai1
T
i 1jbjKij¼ðaTbÞ�K

a@KS
@ ~K

bT¼
XN

i¼1

XN

j¼1

ai
@Kij

@ ~K
bj¼

XN

i¼1

ai1
T
i 1ibiKii¼ðaTbÞ�KS

a@Kd
@ ~K

bT¼
XN

i¼1

XN

j¼1

ai
@ðKijKjiÞ
@ ~K

bj¼
XN

i¼1

XN

j¼1

aið1T
i 1jþ1T

j 1iÞbjKijKji¼ðaTbþbTaÞ�Kd

8>>>>>>>>>>><
>>>>>>>>>>>:

:

ðC2Þ

It should be noted that all differentiations in Eq. (C2) were made
without loss of generality, i.e. assuming all the matrices to be non-
symmetrical. This takes place due to introduction of matrix S in Eq.
(27) in such a way. Particularly, the differentiation of matrix Kd

was made according to Eq. (A1). Application of Eq. (C2) to Eq.
(C1) yields

S¼1
2

ðD�1
C �KÞ�1

1T1ðD�1
C �KÞ�1

� �
�Kþ 1T1ðD�2

C �KdÞ
�1

� �
�KS

þ ðD�2
C �KdÞ

�1ðD�1
C þKSÞ1T1ðD�2

C �KdÞ
�1

� �
�Kd

þ ðD�2
C �KdÞ

�1
1T1ðD�1

C þKSÞðD�2
C �KdÞ

�1
� �

�Kd

2
66664

3
77775:

After some simplifications one obtains the final analytical form
of matrix S:

S¼1
2

ðI�MÞ�11T1DCðI�MÞ�1
� �

�MTþðDCðI�MdÞ�11T1Þ�MS

þ ðI�MT
dÞ
�1ðIþMSÞDC1T1ðI�MT

dÞ
�1

� �
�Md

þ ðI�MdÞ�11T1DCðIþMSÞðI�MdÞ�1
� �

�MT
d

2
66664

3
77775:

ðC3Þ
Appendix D. Reduction of the grand partition function for a
special case of molecular hetero-assembly

The grand partition function (10) is actually a sum of products,
each of which contains certain combination of monomer concen-
trations, that are the markers of molecules, and equilibrium con-
stants, that are the markers of stacks between molecules.
Removing from the grand partition function (10) products which
contain more than m factors of given type, i.e. monomer concentra-
tion of, say, i-type molecules, Ci, one obtains the partition function
of the system in which i-type molecules are presented in com-
plexes m times only. Let us rewrite grand partition function (10)
in the form of a power series in variable Ci:

Ncorr ¼ a0 þ a1Ci þ a2C2
i þ a3C3

i þ � � � ¼
X1
k¼0

akCk
i ; ðD1Þ

where ak is a coefficient, which contains the sum of products of all
equilibrium constants and monomer concentrations excepting Ci.
From the definition of ak one has

a0 ¼ NcorrjCi¼0; a1 ¼
@Ncorr

@Ci

����
Ci¼0

; a2 ¼
1
2
@2Ncorr

@C2
i

�����
Ci¼0

; etc

or in the general form

ak ¼
1
k!

@kNcorr

@Ck
i

�����
Ci¼0

: ðD2Þ

Substituting Eq. (D2) into Eq. (D1) one obtains

Ncorr ¼
X1
k¼0

Ck
i

k!

@kNcorr

@Ck
i

�����
Ci¼0

;

which is an explicit expansion of Ncorr into a Maclaurin series.
The partition function of interest is

NðmÞcorr ¼ a0 þ a1Ci þ � � � þ amCm
i ¼

Xm

k¼0

Ck
i

k!

@kNcorr

@Ck
i

�����
Ci¼0

: ðD3Þ

Eq. (D3) at m ¼ 1 readily yields Eq. (32).

Appendix E. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.chemphys.2013.
06.006.
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