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Abstract. Effect of cold rolling prior to ageing on a dispersion of secondary phases and mechanical 

properties at room temperature for an Al-5.6Cu-0.72Mg-0.5Ag-0.32Mn-0.17Sc-0.12Zr (wt. %) 

alloy, which was solution treated and water quenched initially, was examined. It was shown that 

cold working leads to significant increase in density of lattice dislocations that induces the 

formation discrete agglomerates of the θ′-phase on the {100} planes. Strain of 7% provided 

increased aspect ratio (length to thickness) of plates that leads to moderate increase of strength. 

Imposing of higher strains leads to increased lattice dislocation density and the formation of 

deformation-induced boundaries. Precipitation of the coarse particles of secondary phases on these 

boundaries takes place. The high yield stress (YS) of 535 MPa and ultimate tensile strength (UTS) 

of 570 MPa, were attained after cold rolling with a reduction of 80% followed by ageing at 190°C 

for 2 h. The effect of plastic deformation prior to ageing on the precipitation behavior and 

strengthening of Al-Cu-Mg-Ag alloy is discussed. 

 

Introduction 

The aluminum alloys belonging to Al-Cu-Mg-Ag system exhibit excellent mechanical 

properties at room and elevated temperatures that make it possible to consider them as a material for 

use in aerospace industries for structures operating at elevated temperatures [1-3].Artificial aging of 

Al-Cu-Mg-Ag alloys results in the precipitation of several transition phases as Al2Cu (θ′), Al2Cu(Ω) 

with monoatomic flat interface segregations of Mg-Ag and thermodynamically equilibrium phases 

as Al2Cu (θ), which are distinctly distinguished by morphology and their contribution to overall 

dispersion hardening [2,4]. In peak aged Al-Cu-Mg-Ag alloys the precipitation of a finely dispersed 

predominant Ω-phase and minor θ′-phase occurs. The Ω- and θ′-phase forms as plates on the 

{111}α and {001}α planes, respectively [4,5]. Theoretical calculations having excellent agreement 

with experimental observations conclude that the appearance condition of the maximum increment 

to critical resolved shear stress (CRSS) for alloys containing disperse particles is superposition of 

such important mechanisms contributing to strength as interfacial strengthening, order 

strengthening and Orowan strengthening. This condition is depended on precipitate parameters 

(volume fraction, distribution, interfacial energy, plate length, plate thickness, etc.) [6,7].For given 

volume fraction and number density of shear-resistant plate-shaped precipitates per unit volume, the 

increment in CRSS produced by {111}α plates is invariably larger than that produced by {001}α 

plates and, for both precipitate orientations strengthening increment increases with an increase in 

plate aspect ratio [6]. 

The relative precipitation kinetics of θ′, θ and Ω particles may be affected by the introduction 

of plastic deformation prior to ageing [5]. The plastic deformation of age-hardenable aluminum 

alloys prior to ageing generally leads to increased density of crystallographic defects and accelerate 

the diffusion of solute atoms [8,9]. Whereas, the deformation-induced boundaries are predominant 

places for precipitation of coarse secondary phase after prolonged soaking at high temperature [8,9]. 

These phases are usually thermodynamically equilibrium phases and give no contribution to overall 

dispersion hardening [8]. 

The aim of this paper is to report the effect of cold rolling and subsequent artificial ageing on 

the precipitation behavior and strengthening of an Al-Cu-Mg-Ag alloy. 
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Experimental details 

An aluminum alloy with a chemical composition of Al-5.6Cu-0.72Mg-0.5Ag-0.32Mn-0.17Sc-

0.12Zr-0.1Ge (wt %) was prepared by semi-continuous casting. Initially, ingots with dimensions of 

∅40 mm×120 mm were subjected to a two-step homogenization annealing at 360°C for 6 h, 

followed by subsequent heating to 510°C and soaking for 24 h [10]. After two-step homogenization 

annealing the ingots were forged at 400°C with a strain of 75% to produce rectangular billets. Rods 

with dimensions of 20 mm×20 mm×100 mm were machined from these billets parallel to the major 

axis. These rods were solution treated at 525°C for 1 h followed by water quenching.  

The specimens for tensile were prepared from parts of solution treated rods and them 

stretched by plastic strain (PS) of 1, 3, 5 and 7%. Other parts of solution treated rods were cold 

rolled with reductions of 20, 40 and 80%. For attaining the peak ageing condition the cold deformed 

samples were immediately aged at 190°C from 0.5 to 96 h. 

The hardness measurements were carried out at room temperature by using Vickers hardness 

tester with a load 2 N. The tensile tests were conducted at room temperature at a constant rate of 

crosshead displacement, with initial strain rate equal to 1.3×10
-3

 s
-1

. The flat “dogbone” specimens 

with 25 mm gauge length, 7 mm width and 3 mm thickness were used. The major tensile axes were 

parallel to the rolling or tension directions. The flat surfaces of specimens were ground wet with 

SiC abrasive paper having finish grit size 2400# (FEPA) before tests.  

Specimens for microstructural characterization were prepared from gauge length sections 

parallel to the major axis of the samples. The microstructures were examined using a JEOL JEM-

2100 transmission electron microscope with accelerating potential of 200 kV in bright field(BF-

TEM) mode. The TEM specimens were mechanically ground wet to a thickness of about ~150 µm 

and finally electropolished at 20 V in a solution of 30%-HNO3 and 70%-CH3OH at a temperature of 

-30°C using a Tenupol-5 twin-jet polishing unit. 

 
Fig. 1 Effect of cold deformation as tensile (a) and cold rolling (b) on the ageing response 

measured by a Vickers hardness tester at room temperature. 

Quantitative microstructural characterization and statistical interpretation of particles were 

carried out. The apparent diameter (D) and thickness (h) of each particle were measured from BF-

TEM images with the electron beam orientated parallel to the<011>αzone axis of the matrix. About 

200-300 measurements for each condition were carried out for the statistical purpose. Average 

number density of particles (N) was calculated taking into account the number of particles of Ω 

phase precipitated on two {111}α planes and finally multiplied by 1.5 and divided by the area of the 

view area and foil thickness, which was measured by the convergent electron beam diffraction 

(CBED) method described in work [11].The errors associated with measurements of the diameter 

and thickness of Ω plates are listed based on the particle size distributions. The real error of 

measurements is much less. 

 

Results and discussion 

Hardness. Fig. 1 shows the ageing response at 190°C for the alloy after different types of prior cold 

deformation. In general, there is no effect of tension on the peak age-hardening level which is 
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~165 HV (Fig. 1a). In contrast, cold rolling affects microhardness. The hardness increase up to 

~185 HV was observed for samples subjected to cold rolling with reductions of 20 or 40% followed 

by short aging (Fig. 1b). The prolonged ageing at the same temperature leads to the elimination of 

this positive effect; after 20 h the hardness of all samples is the same (Fig.1b). It should be noted 

that the acceleration of precipitation kinetics take place for the rolled samples, but peak-ageing 

condition (190°C, 2 h) is the same for the all treatments. Keeping of hardness on high level after 

prolonged soaking at relatively high temperature indicates that experimental alloy has excellent 

heat-resistant properties. 

 

Tensile properties. The results of tension tests are summarized in Table 1. Baseline determination of 

mechanical properties after ageing at 190°C for 2 h (T6 temper) shows that the yield stress (YS) of 

450 MPa, ultimate tensile strength (UTS) of 495 MPa with elongation to failure of ~9% can be 

achieved in present alloy without prior plastic deformation. It is seen that there is a negative effect 

of plastic strain of 1% by tension on strength after ageing. Further increase of plastic strain from 3% 

to 80% leads to gradual strength increase. The experimental alloy after cold rolling with a reduction 

of 80% and ageing at 190°C for 2 h demonstrates highest values of YS of ~535 MPa, UTS of 

~560 MPa and elongation to failure of ~7%. Experimental values of the increments in CRSS 

attributed to the all strengthening mechanisms can be determined as σYS/M, where σYS is the YS, 

M= 3.06 is the Taylor factor for polycrystalline fcc alloys with random texture [6]. 

 

Microstructure. The full details of the nature, average size, shape and distribution of the secondary 

phases in the homogenized and solution treated alloy were previously described in detail [10].  

The microstructure of the solution treated alloy consisted of initial grains having average 

dimensions of ∼48 and ∼30 µm in the longitudinal and transverse directions, respectively. Coarse 

particles of the primary θ-phase and ternary W-phase (Al8-xCu4+xSc) were situated on grain 

Table 1 Effect of cold deformation on the tensile properties 

Treatment 

YS, 

σYS 

[MPa] 

UTS, 

σUTS 

[MPa] 

Uniform 

elongation, δUE 

[%] 

Elongation to 

failure, δ [%] 

σYS/σU

TS 

CRSS, 

σYS/M 

[MPa] 

Solution treatment 145 370 20 22 0.392 47 

Ageing at 190°C for 2 h 

(T6) 
450 495 5.5 8.9 0.909 147 

Tension to PS of 1% and 

ageing at 190°C for 2 h. 
440 485 5.4 8.6 0.907 144 

Tension to PS of 3% and 

ageing at 190°C for 2 h. 
460 495 5.5 8.4 0.929 150 

Tension to PS of 5% and 

ageing at 190°C for 2 h. 
465 495 5.8 7.7 0.939 150 

Tension to PS of 7% and 

ageing at 190°C for 2 h. 
480 515 6.4 9.4 0.932 157 

Tension to PS of 10% and 

ageing at 190°C for 2 h. 
480 510 4.2 6.8 0.941 157 

Cold rolling with 

reduction of 20% and 

ageing at 190°C for 2 h. 

505 530 3.7 6.5 0.953 165 

Cold rolling with 

reduction of 40% and 

ageing at 190°C for 2 h. 

530 560 4.7 7.1 0.946 173 

Cold rolling with 

reduction of 80% and 

ageing at 190°C for 2 h. 

535 570 3.9 5.9 0.939 175 
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boundaries [10]. It is worth noting that the coherent particles of the Al3(Sc,Zr) phase having average 

size of ~25 nm were non-uniformly distributed within interiors of grains [10]. 

 

 
Fig. 2 <110> α BF-TEM images of samples after no prior strain followed by ageing at 190°C for 2 h 

(a), a prior strain of 7% followed by ageing at 190°C for 2 h (b), a prior strain of 80% followed by 

ageing at 190°C for 2 h (d) 

Fig. 2 shows a series of <110>α BF-TEM images and SAED patterns of precipitation 

structures after cold deformation and ageing at 190°C for 2 h. The particles aligned along the 

{110}α planes were identified as Ω-phase. Values of the length (D), thickness (h) and number 

density (N) of the Ω particles within grain interiors are listed in Table 2. There is the conspicuous 

effect of cold deformation on the morphology of the Ω-phase particles. The aspect ratio (length to 

thickness) is dependent on strain and increases from 14.2±3.2 for T6 sample to 29.7±2.5 for 

treatment with PS of 7% and ageing at 190°C for 2 h (Table 2, Figs. 2a and b). This effect results 

from thinning of the Ω plates due to prior strain (Figs. 2c and d). The precipitation of thicker Ω-

plates on the deformation-induced boundaries takes place. It is worth noting that homogeneous 

nucleation of the Ω-phase takes place with and without strain.  

It should be noted that the other particles aligned along the {001}α planes were identified as 

θ′-phase. After ageing the density of these particles is negligible for unstrained samples. Tensile 

Table 2 Effect of tempers on the precipitate parameters of the Ω-phase within grain interiors 

Condition 
Length, D 

[nm] 

Thickness, h 

[nm] 

Aspect ratio, 

A 
ΔτIS 

[MPa] 

ΔτOrdS 

[MPa] 

Ageing at 190°C for 2 h (T6) 23.9±11.7 1.6±0.4 14.15±3.17 15 84 

Tension to PS of 7% and ageing 

at 190°C for 2 h. 
30.8±14.5 1.0±0.3 29.67±2.49 50 77 

Cold rolling with reduction of 

80% and ageing at 190°C for 

2 h. 

25.3±9.8 1.0±0.3 25.11±1.51 41 75 
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strains lead to heterogeneous precipitation of the thin plates of θ′-phase as discrete conglomerates 

on the lattice dislocations (Fig. 2b). 

The increments in CRSS were calculated for mechanisms of interfacial strengthening, order 

strengthening, and Orowan strengthening. The contribution of the matrix phase (τm) to the CRSS of 

the alloy was typically assumed to be of the order of 10 MPa [12]. The increment in CRSS due to 

Orowan strengthening mechanism is given by [6]: 

∆τ�� = � 	
��√���� � �
�.���������.���� !" �� # ��.���$% �ln

�.�(�$)˳ �.      (1) 

where G is the shear modulus of the Al matrix phase, b is the Burgers vector of the slip dislocations, 

ν is Poisson’s ratio, D and h is average length and thickness of plate-like particles, ro is the core 

radius of dislocations, f = 0.054 is the volume fraction of particles. In present analysis, G = 25 GPa, 

b= 0.286 nm, ν = ⅓ [6], ro = ¾b = 0.215 nm. The substitution of these values and precipitate 

parameters from Table 2 into Eq. 1 leads to increments in CRSS of 245, 305 and 295 MPa for T6 

condition, and samples subjected to prior strains of and 80%, respectively, followed by the aging. 

The contribution of this mechanism is significantly higher than values of total CRSS for aged 

samples (Table 1) and cannot be considered as operative. 

The increment in CRSS due to interfacial strengthening for an alloy containing shearable 

{111}α plates can be written in form: 

∆+,- = �.���./� 0123 4 56�/�          (2) 

where γi is the specific interfacial energy between precipitate and matrix phases (currently accepted 

values for  specific precipitate/matrix energy vary in range 0.01 to 0.1 J/m
2
[6]), Γ is the dislocation 

line tension given by [6]: 

8 = 91��: ln� .��1�2           (3) 

In present analysis, γi ~ 0.06 J/m
2
 was used for calculations. 

The contribution of order strengthening to CRSS is given by an equation of the form [7]: 

∆+;<=- = 0>?@A�1 4 BC�2/>?@A:3 0D√(� 4�/�E�/� − GHI       (4) 

where A is an aspect ratio of the {111}α plates, γapb is specific antiphase boundary energy on the 

slip plane of the precipitate phase, C = 1/3 is a constant for alloy aged with no stress [14]. The value 

of γapb = 0.3 J/m
2
 was used for theoretical calculations. Substituting Eq. 3 into Eq. 2 and 4 allows 

calculating variation of the increments in CRSS for the different precipitates. These values 

calculated are summarized in Table 2. 

Thereby, the Al-Cu-Mg-Ag alloy had been subjected cold working up to a strain of80% 

followed by artificial ageing at 190°C. It was found that cold working effects on the precipitation 

behavior and strength of the peak aged alloy. Careful examination of the microstructures has 

revealed that the minor plastic strains leads to increased aspect ratio by the significant thinning of Ω 

plates. Present calculation does not consider the formation of atom segregates on crystallographic 

defects at the expense of the supersaturated solid solution required for the precipitation of the Ω-

plates in cold worked samples. However, in the first approximation it allows comparing the 

strengthening effect of the Ω plates with different dimensions. The derived values show that 

thinning of the Ω plates leads to strength increment in CRSS due to modification of morphology of 

precipitates. At high strains, the precipitation hardening does not increase strengthening 

significantly, which is confirmed by the experimental results. Increase of dislocation density and 

formation of the deformation-induced boundaries are main reasons for strengthening of such alloy 

after prior plastic deformation to high strain and following artificial ageing. It is apparent that the 
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chains of thicker nanoscale particles of the Ω-phases on deformation-induced boundaries makes 

them non-transparent for gliding dislocations and these boundaries contribute to grain size 

strengthening in accordance with Hall-Petch equation. 

 

Summary 

It was shown that an increase in strength of Al–Cu–Mg–Ag alloy could be achieved changes 

in a dispersion of secondary phases through plastic deformation prior to ageing. The effect of strain 

on aspect ratio of the Ω-phase plates is observed. The alloy subjected to cold rolling with a 

reduction of 80% followed by ageing at 190°C for 2 h demonstrates YS of ~535 MPa, UTS of ~ 

570 MPa and elongation to failure of ~6%. 
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