MSC 70H05

ХАРАКТЕРИЗАЦИЯ ЛИНЕЙНЫХ ГАМИЛЬТОНОВЫХ СИСТЕМ

А.В. Субботин, Ю.П. Вирченко

Белгородский государственный университет, ул. Победы, 85, Белгород, 308015, Россия, e-mail: <u>virch@bsu.edu.ru</u>

Вещественную $2n \times 2n$ -матрицу $\mathfrak{G}, n \in \mathbb{N}$ вида

$$\mathfrak{G} = \begin{pmatrix} -\mathfrak{B}^T & -\mathfrak{C} \\ \mathfrak{A} & \mathfrak{B} \end{pmatrix} \tag{1}$$

с блоками в виде $n \times n$ -матриц $\mathcal{A}, \mathcal{B}, \mathcal{C}$ таких, что $\mathcal{A}^T = \mathcal{A}, \mathcal{C}^T = \mathcal{C}$ назовем канонической гамильтоновой матрицей с n степенями свободы.

Важность изучения таких матриц связана с тем, что они являются генераторами сдвига по времени $t \in \mathbb{R}$ вдоль траекторий $\langle P(t), Q(t) \rangle$, $P(t) = \langle p_1(t), ..., p_n(t) \rangle$ и $Q(t) = \langle q_1(t), ..., q_n(t) \rangle$ в \mathbb{R}^{2n} для линейных механических гамильтоновых систем

$$\dot{p}_i = -rac{\partial \mathsf{H}}{\partial q_i}\,,\quad \dot{q}_i = rac{\partial \mathsf{H}}{\partial p_i}\,, \qquad i = 1 \div n\,,$$

каждая из которых определяется квадратичной формой

$$\mathsf{H} = \frac{1}{2}(P, \mathcal{A}P) + (P, \mathcal{B}Q) + \frac{1}{2}(Q, \mathcal{C}Q).$$

В работе устанавливается характеристическое свойство для матриц $\mathcal F$ четной размерности 2n, которые приводятся посредством линейного преобразования $\mathcal U\mathcal G\mathcal U^T=\mathcal F$ к канонической гамильтоновой матрице $\mathcal G$ на основе ортогональной $2n\times 2n$ -матрицы $\mathcal U$, $\mathcal U\mathcal U^T=\mathcal U^T\mathcal U=1$. Эта характеризация основана на следующем наблюдении

Teopema 1. Для того, чтобы матрица 9 имела вид (1) необходимо и достаточно чтобы она удовлетворяла соотношению

$$\mathcal{J}\mathcal{G}\mathcal{J}^T = -\mathcal{G}^T, \tag{2}$$

где $2n \times 2n$ -матрица $\mathcal J$ имеет блочный вид

$$\mathcal{J} = \left(egin{matrix} 0 & 1 \ -1 & 0 \end{matrix}
ight) \,.$$

Основой для характеризации является

Теорема 2. Множество вещественных $2n \times 2n$ -матриц \mathbb{J} , удовлетворяющих условиям $\mathbb{J}^T = -\mathbb{J}$, $\mathbb{J}^2 = -\mathbf{1}$, состоит из матриц, ортогонально эквивалентных матрице \mathbb{J} , то есть

$$\mathfrak{I} = \mathfrak{U}\mathfrak{J}\mathfrak{U}^T$$
, $\mathfrak{U}\mathfrak{U}^T = \mathfrak{U}^T\mathfrak{U} = \mathbf{1}$.

Следствием этого утверждения является

Теорема 3. Для того, чтобы $2n \times 2n$ -матрица $\mathcal F$ приводилась посредством линейного преобразования к матрице $\mathcal G$ на основе ортогональной матрицы $\mathcal U$ необходимо и достаточно чтобы существовала матрица $\mathcal I$ такая, что $\mathcal I^T=-\mathcal I$, $\mathcal I^2=-1$, для которой имеет место $\mathcal I\mathcal F\mathcal I^T=-\mathcal F^T$.

Таким образом, это свойство является характеристическим для матриц ортогонально эквивалентных некоторой канонической гамильтоновой матрице.