A danmuвные и робастные системы

УДК 62-501.52

© 1999 г. А.В. МАМАТОВ, канд. техн. наук, В.Н. ПОДЛЕСНЫЙ, канд. техн. наук, В.Г. РУБАНОВ, д-р техн. наук (Белгородская государственная технологическая академия строительных материалов)

ОБОБЩЕННЫЙ КРИТЕРИЙ РОБАСТНОЙ МОДАЛЬНОСТИ ЛИНЕЙНЫХ СИСТЕМ С ЭЛЛИПТИЧЕСКОЙ НЕОПРЕДЕЛЕННОСТЬЮ ПАРАМЕТРОВ 1

Формулируется обобщенный частотный критерий робастной модальности полиномов, коэффициенты которых линейно зависят от параметров, определенных с точностью до принадлежности многомерному эллипсоиду. Исследуется возможность применения предложенного критерия для анализа различных видов робастной модальности линейных непрерывных и дискретных систем с эллиптически неопределенным объектом управления и фиксированным регулятором.

1. Введение

Современное состояние теории робастных систем характеризуется большим разнообразием постановок задач и формулировок критериев робастной устойчивости и модальности [1–5]. При этом значительное внимание уделяется случаю интервальной неопределенности параметров, что с одной стороны, объясняется историческими факторами (толчком для развития теории робастной устойчивости послужили работы В. Л. Харитонова по устойчивости семейств интервальных полиномов), и с другой стороны, обусловлено распространенностью интервальной формы представления неопределенности параметров при структурно-аналитическом подходе к получению моделей систем управления.

Наряду с интервальными ограничениями практический интерес представляет случай эллиптической неопределенности, когда параметры определены с точностью до принадлежности многомерному эллипсоиду. Эллиптические ограничения на неопределенность параметров получают, например, при вычислении доверительных областей с использованием экспериментально-статистических методов построения математических моделей динамических объектов. Впервые эллиптические ограничения на неопределенность параметров были рассмотрены в работе [6], где сформулированы теоремы, позволяющие определить максимальный по условию сохранения устойчивости радиус гиперсферы в пространстве коэффициентов характеристического уравнения непрерывной или дискретной системы. В работе [7] предложен метод анализа робастной модальности полиномов, коэффициенты которых представляют собой аффинную функцию сферических параметрических возмущений. Близкий результат для полиномиальных и трансцендентных характеристических уравнений получен в [8] в виде алгоритма вычисления меры робастной модальности.

В работах [6-8] решением задачи анализа робастной модальности является область допустимых значений параметров в виде многомерного эллипсоида или ги-

¹ Работа выполнена при финансовой поддержке Министерства общего и профессионального образования РФ (грант Санкт-Петербургского государственного электротехнического университета).

персферы. Общий для [6–8] метод решения основывается на условной минимизации евклидовой нормы вектора параметрических возмущений. Другой подход применен в работах [9, 10], где сформированы частотные критерии робастной устойчивости и модальности, в которых эллиптические ограничения на параметрическую неопределенность используются как исходные данные, а проверка свойств номинального полинома и вычисление меры робастной устойчивости и модальности осуществляются с использованием модифицированного годографа Михайлова.

К важным свойствам эллиптических ограничений относится то, что при линейном преобразовании пространства параметров область неопределенности остается эллиптической. Указанное свойство позволяет на основе частотного метода исследования робастной устойчивости и модальности, разработанного Я. З. Цыпкиным и Б. Т. Поляком, получить обобщенный критерий в форме удобной для непосредственного анализа различных видов робастной модальности (устойчивости, степени устойчивости, степени колебательности и др.) разомкнутых и замкнутых систем автоматического управления.

В разделе 2 настоящей работы приводится критерий робастной модальности для эллиптических характеристических полиномов и анализируются его особенности по сравнению с полученными ранее в [6–10]. В последующих разделах разрабатывается техника использования предложенного критерия в задачах робастного анализа линейных непрерывных и дискретных систем с эллиптически неопределенным объектом управления и фиксированным регулятором.

2. Постановка задачи и основной результат

Рассмотрим семейство полиномов:

(1)
$$D(\lambda) = a_0 + a_1 \lambda + \dots + a_n \lambda^n, \quad \mathbf{a} \in A,$$

где λ – комплексная переменная; $\mathbf{a} = [a_0 a_1 \dots a_n]^T$ – вектор коэффициентов; $A \subset \mathbb{C}$ \mathbb{C} \mathbb{C} – множество неопределенности коэффициентов:

(2)
$$A = \{ \mathbf{a} : \mathbf{a} = \mathbf{a}^* + \mathbf{Ab}, \ \mathbf{b} \in B \}.$$

Здесь $\mathbf{a}^* = \left[a_0^* a_1^* \dots a_n^*\right]^T$ – вектор независимых коэффициентов; $\mathbf{b} = [b_0 b_1 \dots b_m]^T$ – вектор параметров; \mathbf{A} – матрица линейного преобразования размерности; $(n+1) \times (m+1)$; $B \subset R^{m+1}$ – множество неопределенности параметров, представляющее собой многомерный эллипсоид в пространстве параметров R^{m+1} :

$$(3) \hspace{1cm} B = \left\{\mathbf{b}: (\mathbf{b} - \mathbf{b}^0)^T (\mathbf{B}^{-1})^T \mathbf{B}^{-1} (\mathbf{b} - \mathbf{b}^0) \leqslant \gamma^2 \right\},$$

где ${\bf B}$ — матрица размерности $(m+1)\times (m+1)$ такая, что $({\bf B}^{-1})^T{\bf B}^{-1}$ есть вещественная симметрическая положительно определенная матрица размерности $(m+1)\times (m+1);$ ${\bf b}^0=[b_0^0b_1^0\ldots b_m^0]^T$ — номинальный вектор параметров; $\gamma>0$ — размах параметрических возмущений.

Необходимо определить принадлежность корней семейства полиномов (1) некоторой замкнутой области Λ в плоскости корней, определяющей модальные свойства семейства.

Для решения поставленной задачи воспользуемся частотным подходом к исследованию робастной модальности линейных систем.

Представим $D(\lambda)$ в виде

(4)
$$D(\lambda) = \mathbf{d}^T(\lambda)\mathbf{a},$$

где $\mathbf{d}(\lambda) = [1 \ \lambda \dots \lambda^n]^T$, и введем в рассмотрение комплексную функцию

(5)
$$\lambda = \lambda(\omega), \quad \omega \in \Omega \subset \mathbb{R}^1,$$

задающую границу области Λ в параметрической форме.

При подстановке (3) и (5) в (4) имеем:

(6)
$$\mathbf{q}(\omega) = \mathbf{Q}(\omega)(\mathbf{a}^* + \mathbf{Ab}),$$

где $\mathbf{q}(\omega) = [\mathrm{Re}\,D(\lambda(\omega))\,\,\mathrm{Im}\,D(\lambda(\omega))]^T$ – вектор, элементами которого являются координаты точки годографа $D(\lambda(\omega))$ в комплексной плоскости при фиксированном значении параметра $\omega;\,\,\mathbf{Q}(\omega)$ – матрица линейного преобразования размерности $2\times(n+1)$:

(7)
$$\mathbf{Q}(\omega) = \left[\operatorname{Re} \mathbf{d}(\lambda(\omega)) \operatorname{Im} \mathbf{d}(\lambda(\omega)) \right]^{T}.$$

Сформируем матрицу **K** размерности 2×2 (для компактности записи опустим обозначение зависимости матрицы **K** от параметра ω):

(8)
$$\mathbf{K} = \mathbf{Q}(\omega) \mathbf{A} \mathbf{B} (\mathbf{Q}(\omega) \mathbf{A} \mathbf{B})^{T},$$

и представим ее в виде разложения:

(9)
$$\mathbf{K} = \mathbf{CDC}^T$$
,

где ${\bf C}$ — ортонормированная матрица собственных векторов матрицы ${\bf K}; {\bf D} = {\rm diag} \left[d_{11} d_{22} \right]$ — матрица собственных чисел матрицы ${\bf K}.$

Справедливо следующее

Утверждение 1. Для всех $\omega \in \Omega$ область $Q(\omega) = \{\mathbf{q}(\omega) : \mathbf{b} \in B\}$ представляет собой:

- 1) эллипс с центром в точке $\mathbf{q}^0(\omega) = \mathbf{Q}(\omega)(\mathbf{a}^* + \mathbf{A}\mathbf{b}^0)$, полуосями $a_q = \gamma \sqrt{d_{11}}$, $b_q = \gamma \sqrt{d_{22}}$ и углом поворота $\Theta_q = \arg\left([1\ j]\mathbf{C}[1\ 0]^T\right)$, в случае $d_{11} > 0$, $d_{22} > 0$;
- 2) отрезок с центром в точке $\mathbf{q}^0(\omega) = \mathbf{Q}(\omega)(\mathbf{a}^* + \mathbf{A}\mathbf{b}^0)$, полудлиной $a_q = \gamma \sqrt{d_{11}}$ и углом наклона $\Theta_q = \arg\left([1\ j]\mathbf{C}[1\ 0]^T\right)$, в случае $d_{11} > 0$, $d_{22} = 0$;
- 3) отрезок с центром в точке $\mathbf{q}^0(\omega) = \mathbf{Q}(\omega)(\mathbf{a}^* + \mathbf{A}\mathbf{b}^0)$, полудлиной $b_q = \gamma \sqrt{d_{22}}\ u$ углом наклона $\Theta_q = \pi/2 + \arg\left([1\ j]\mathbf{C}[1\ 0]^T\right)$, в случае $d_{11} = 0,\ d_{22} > 0$;
 - 4) mounty $\mathbf{q}^{0}(\omega) = \mathbf{Q}(\omega)(\mathbf{a}^{*} + \mathbf{A}\mathbf{b}^{0})$, в случае $d_{11} = 0$, $d_{22} = 0$.

Определим модуль и аргумент вектора $\mathbf{q}^0(\omega)$: $\rho^0(\omega) = \sqrt{(\mathbf{q}^0(\omega))^T \mathbf{q}^0(\omega)}$, $\varphi^0(\omega) = \arg([1\ j]\mathbf{q}^0(\omega))$, а также вспомогательную функцию:

$$\rho(\omega) = \begin{cases} \rho^0(\omega) \big(a_q^{-2} \cos^2(\varphi^0 - \Theta_q) + b_q^{-2} \sin^2(\varphi^0 - \Theta_q) \big)^{1/2}, \ a_q \neq 0 \ \text{и} \ b_q \neq 0; \\ \rho^0(\omega) a_q^{-1}, \ a_q \neq 0 \ \text{и} \ \sin(\varphi^0(\omega) - \Theta_q) = 0; \\ \rho^0(\omega) b_q^{-1}, \ b_q \neq 0 \ \text{и} \ \cos(\varphi^0(\omega) - \Theta_q) = 0; \\ \infty, \ \text{в остальных случаях}. \end{cases}$$

Основываясь на принципах аргумента и исключения нуля, а также утверждении 1, сформулируем обобщенный критерий робастной модальности семейства полиномов с эллиптической неопределенностью параметров.

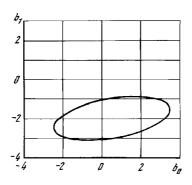


Рис. 1

Таким образом, для оценки модальных свойств семейства полиномов (1) требуется проанализировать поведение годографа $z(\omega)$, построение которого осуществляется в соответствии со следующим алгоритмом:

- 1) в зависимости от вида области Λ конкретизируется функция $\lambda = \lambda(\omega)$, а также согласно требованиям формулировки критерия 1 определяется диапазон и направление изменения параметра ω ;
- 2) для фиксированного ω последовательно вычисляются модуль $\rho^0(\omega)$ и аргумент $\varphi^0(\omega)$ вектора $\mathbf{q}^0(\omega)$, матрица \mathbf{K} и ее собственные числа и нормированные собственные векторы, параметры a_q , b_q , Θ_q , вспомогательная функция $\rho(\omega)$;
 - 3) строится годограф $z(\omega) = \rho(\omega)e^{j\varphi^0(\omega)}$.

Наряду с оценкой модальных свойств семейства (1) с заданным размахом параметрических возмущений γ критерий 1 позволяет определить максимальное допустимое значение параметра γ_{\max} :

(11)
$$\gamma_{\max} = \inf_{\omega \in \Omega} \rho(\omega).$$

Отличительными особенностями критерия 1 от известных [6–10] являются:

- 1) непосредственное использование в формулировке критерия матриц $\mathbf{Q}(\omega)$, \mathbf{B} , \mathbf{A} , задающих соответственно область модальности, область неопределенности параметров, зависимость коэффициентов характеристического полинома от неопределенных параметров;
- 2) возможность определения количества корней семейства полиномов, гарантированно принадлежащих заданной области модальности;
 - 3) явное описание области значений характеристического полинома.

Для иллюстрации использования критерия 1 рассмотрим

Пример 1. Задано семейство полиномов

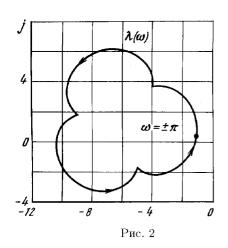
$$D(\lambda) = (-12 + b_0 - 5b_1) + (-4 + b_0)\lambda + (9 + b_0 + b_1)\lambda^2 + + (3 + 2b_1)\lambda^3 + (3 - b_0 + b_1)\lambda^4 + \lambda^5,$$

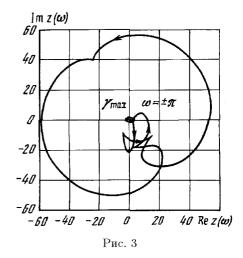
для которого область неопределенности параметров представляет собой эллипс (рис. 1):

$$B = \left\{ \mathbf{b} : (\mathbf{b} - \mathbf{b}^0)^T (\mathbf{B}^{-1})^T \mathbf{B}^{-1} (\mathbf{b} - \mathbf{b}^0) \leqslant 1 \right\},\,$$

где

$$\mathbf{b}^0 = [0,5 \ -2]^T; \quad \mathbf{B} = \left[egin{array}{cc} 2,96 & -0,17 \\ 0,51 & 0,99 \end{array}
ight].$$





Необходимо оценить принадлежность корней семейства области Λ , ограниченной эпициклоидой (рис. 2):

$$\begin{split} \lambda(\omega) &= [1\ j] \left[\begin{array}{cc} 0.98 & 0.2 \\ -0.2 & 0.98 \end{array} \right] \left[\begin{array}{cc} -(6.15+4\ \cos(\omega)-\cos(4\ \omega)) \\ -4\sin(\omega)+\sin(4\ \omega) \end{array} \right], \\ \omega &\in [-\pi\ \pi]. \end{split}$$

В данном случае имеем:

$$\mathbf{a}^* = [-12 \ -4 \ 9 \ 3 \ 3 \ 1]^T; \quad \mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 0 & -1 & 0 \\ -5 & 0 & 1 & 2 & 1 & 1 \end{bmatrix}^T.$$

На рис. 3 приведен годограф $z(\omega)$. Из формулировки критерия 1 следует, что каждый из полиномов заданного семейства имеет один корень, лежащий внутри области Λ , и четыре корня, лежащих за ее пределами, так как при изменении ω от $-\pi$ до π , годограф $z(\omega)$ имеет приращение аргумента 2π и не пересекает круг с центром в начале координат и радиусом 1. Максимальное допустимое значение размаха параметрических возмущений, при котором сохраняется указанное расположение корней $\gamma_{\rm max}=2{,}01$.

3. Формирование множества неопределенности коэффициентов характеристического полинома системы автоматического управления

Использование обобщенного критерия робастной модальности семейства полиномов с эллиптической неопределенностью параметров при решении типовых задач анализа робастной модальности непрерывных и дискретных систем автоматического управления на первом этапе предполагает формирование множества неопределенности коэффициентов характеристического полинома (2).

Рассмотрим систему автоматического управления, структурная схема которой приведена на рис. 4. Здесь $W_i(\lambda)=\frac{R_i(\lambda)}{P_i(\lambda)},\ i=0,1$ – передаточные функции соответственно объекта управления и регулятора, где $R_i(\lambda)=\sum\limits_{k=0}^{m_i}r_{ik}\lambda^k,\ P_i(\lambda)=\sum\limits_{k=0}^{n_i}p_{ik}\lambda^k;$

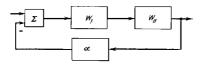


Рис. 4

 $\lambda=s$ комплексная переменная преобразования Лапласа для непрерывных систем; $\lambda=z$ – комплексная переменная z-преобразования для дискретных систем; α – коэффициент обратной связи.

Предположим, что часть коэффициентов числителя и знаменателя передаточной функции объекта управления известна точно, а другая часть, образующая вектор неопределенных нараметров ${\bf b}$, определена с точностью до принадлежности заданному многомерному эллинсоиду B (3). При этом матрица ${\bf B}$ определяется произведением матрицы поворота эллинсоида B относительно базовой системы координат на диагональную матрицу полуосей эллинсоида, а нараметр γ принимается равным 1.

Введем обозначения $\mathbf{r}_i = [r_{i0} \dots r_{im_i}]^T$, $\mathbf{p}_i = [p_{i0} \dots p_{in_i}]^T$, i = 0,1 и сформируем из коэффициентов числителя и знаменателя передаточной функции объекта управления вектор $\mathbf{a}_0 = [\mathbf{r}_0^T \ \mathbf{p}_0^T]^T$. Заменой на 0 элементов вектора \mathbf{a}_0 , вошедших в вектор нараметров \mathbf{b} , получим вектор независимых коэффициентов объекта управления \mathbf{a}_0^* . Тогда вектор коэффициентов \mathbf{a}_0 может быть представлен в виде суммы:

$$\mathbf{a}_0 = \mathbf{a}_0^* + \mathbf{A}_0 \mathbf{b},$$

где \mathbf{A}_0 матрица линейного преобразования размерности $(n_0+m_0+2)\times(m+1)$, в которой j-й элемент i-й строки равен 1, если j-й элемент вектора параметров \mathbf{b} является i-м элементом вектора коэффициентов \mathbf{a}_0 , и равен 0 в противном случае.

Запишем характеристический полином системы:

(13)
$$D(\lambda) = \alpha R_1(\lambda) R_0(\lambda) + P_1(\lambda) P_0(\lambda)$$

и выразим вектор коэффициентов характеристического полинома через вектор коэффициентов передаточной функции объекта управления:

(14)
$$\mathbf{a} = \mathbf{S}\mathbf{a}_0$$
.

Матрица **S** размерности $(n+1) \times (n_0+m_0+2)$ определяется выражением (13) и имеет следующую структуру: $\mathbf{s}_{\bullet j} = \begin{bmatrix} \mathbf{0}_{j-1}^T & \alpha \mathbf{r}_0^T & \mathbf{0}_{n-m_1-j+1}^T \end{bmatrix}^T$, $j = \overline{1,m_0+1}$, $\mathbf{s}_{\bullet m_0+1+j} = \begin{bmatrix} \mathbf{0}_{j-1}^T & \mathbf{p}_0^T & \mathbf{0}_{n-n_1-j+1}^T \end{bmatrix}^T$, $j = \overline{1,n_0+1}$, здесь $\mathbf{s}_{\bullet j} - j$ -й столбец матрицы **S**; $\mathbf{0}_k$ – пулевой вектор размерности $k \times 1$; $n = n_1 + n_0$ – порядок характеристического полинома системы.

Подставив (12) в (14), получим $\mathbf{a} = \mathbf{S} \mathbf{a}_0^* + \mathbf{S} \mathbf{A}_0 \mathbf{b}$, откуда найдем вектор независимых коэффициентов характеристического полипома $\mathbf{a}^* = \mathbf{S} \mathbf{a}_0^*$ и матрицу линейного преобразования вектора параметров $\mathbf{A} = \mathbf{S} \mathbf{A}_0$, необходимые для формирования в соответствии с выражением (2) множества неопределенности A коэффициентов характеристического полинома системы автоматического управления.

4. Исследование робастной модальности линейных непрерывных систем

В типовых задачах исследования модальности линейных непрерывных систем область Λ представляет собой симметричную относительно вещественной оси открытую полутранецию, граница которой определяется заданными корневыми показателями качества и может быть выражена в виде:

$$\lambda(\omega) = \begin{cases} -\eta + j\omega, \ (|\omega| < \eta/\mu \text{ и } \mu \neq 0) \text{ или } (|\omega| < \infty \text{ и } \mu = 0); \\ -\mu|\omega| + j\omega, \quad \eta/\mu \leqslant |\omega| < \infty \quad \text{и} \quad \mu \neq 0, \end{cases}$$

где $\eta\geqslant 0$ — степень устойчивости; $\mu\geqslant 0$ — степень колебательности; $\omega\in]-\infty;\infty[$. Необходимо оценить принадлежность всех корней характеристического полинома системы данной области.

Используя билинейное преобразование $\widetilde{\lambda}=(1+\lambda)/(1-\lambda)$, осуществим конформное отображение плоскости λ в плоскость $\widetilde{\lambda}$. При этом открытая полутрапеция Λ в плоскости λ с границей (15) отображается в замкнутую область $\widetilde{\Lambda}$ в плоскости $\widetilde{\lambda}$ с границей $\widetilde{\lambda}(\omega)=(1+\lambda(\omega))/(1-\lambda(\omega))$.

Произведем в (1) замену $\lambda=\left(\widetilde{\lambda}-1\right)/\left(\widetilde{\lambda}+1\right)$. Тогда после умножения (1) на $\left(\widetilde{\lambda}+1\right)^n$ получим

$$\widetilde{D}(\widetilde{\lambda}) = \left(\widetilde{\lambda} + 1\right)^n D\left(\frac{\widetilde{\lambda} - 1}{\widetilde{\lambda} + 1}\right) = a_0 \left(\widetilde{\lambda} + 1\right)^n + a_1 \left(\widetilde{\lambda} + 1\right)^{n-1} \left(\widetilde{\lambda} - 1\right) + \dots + a_n \left(\widetilde{\lambda} - 1\right)^n,$$

или

$$\widetilde{D}(\widetilde{\lambda}) = \widetilde{a}_0 + \widetilde{a}_1 \widetilde{\lambda} + \dots + \widetilde{a}_n \widetilde{\lambda}^n.$$

Вектор коэффициентов $\tilde{\mathbf{a}} = \left[\widetilde{a}_0 \widetilde{a}_1 \dots \widetilde{a}_n \right]^T$ вычисляется как линейное преобразование вектора коэффициентов исходного характеристического полинома $\tilde{\mathbf{a}} = \mathbf{T}\mathbf{a}$. Элементы матрицы линейного преобразования \mathbf{T} определяются следующим образом: $t_{mj} = 1, \ t_{n-ij} = \sum_{\nu=0}^n C_{\nu}^j C_{i-\nu}^{n-j} (-1)^{\nu}, \ t_{0j} = (-1)^j, \ i = \overline{1,n-1}, \ j = \overline{0,n}$. Здесь C_k^{ℓ} – биномиальные коэффициенты.

Таким образом, задача анализа принадлежности корней характеристического полинома $D(\lambda)$ открытой полутрапеции Λ в плоскости λ сводится к задаче анализа принадлежности корней характеристического полинома $\widetilde{D}(\widetilde{\lambda})$ замкнутой области $\widetilde{\Lambda}$ в плоскости $\widetilde{\lambda}$, что позволяет использовать обобщенный критерий робастной модальности при соответствующей модификации выражения (7): $\mathbf{Q}(\omega) = [\operatorname{Re} \mathbf{d}(\widetilde{\lambda}(\omega)) \times \operatorname{Im} \mathbf{d}(\widetilde{\lambda}(\omega))]^T \mathbf{T}$.

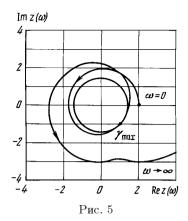
Учитывая симметричность области Λ относительно вещественной оси плоскости λ и вещественность коэффициентов характеристического полинома, конкретизируем формулировку обобщенного критерия робастной модальности линейных непрерывных систем.

Kputepuŭ 2. Для того, чтобы линейная непрерывная система обладала заданным видом робастной модальности Λ , необходимо и достаточно, чтобы при изменении ω от 0 до ∞ годограф $z(\omega) = \rho(\omega)e^{j\varphi^0(\omega)}$ обходил в положительном направлении 2n квадрантов координатной плоскости и не пересекал круг с центром в начале координат и радиусом γ .

Рассмотрим

 Π ример 2. Пусть заданы:

– передаточная функция объекта управления $W_0(s) = \frac{b_0 + 5 s}{b_1 + b_2 s + 3 s^2 + s^3}$, где $\mathbf{b} = [b_0 \ b_1 \ b_2]^T$ – вектор параметров с множеством неопределенности в виде эллипсоида с центром в $\mathbf{b}^0 = [5 \ 1 \ 2,5]^T$ и диагональной матрицей полуосей $\mathbf{B} = \mathrm{diag}[0,5 \ 0,1 \ 0,25]$;



- передаточная функция ПИ-регулятора $W_1(s) = \frac{0.04 + 0.01\,s}{s};$
- $-\eta=0.1$ степень устойчивости, $\mu=0.3$ степень колебательности, $\alpha=1$ коэффициент отрицательной обратной связи.

Сформируем необходимые векторы и матрицы:

- вектор независимых коэффициентов объекта управления

$$\mathbf{a}_0^* = [0 \ 5 \ 0 \ 0 \ 3 \ 1]^T;$$

- матрицу линейного преобразования

$$\mathbf{A}_0 = \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array} \right]^T;$$

- матрицу линейного преобразования

$$\mathbf{S} = \begin{bmatrix} 0.04 & 0 & 0 & 0 & 0 & 0 \\ 0.01 & 0.04 & 1 & 0 & 0 & 0 \\ 0 & 0.01 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}^T;$$

– вектор независимых коэффициентов характеристического полинома

$$\mathbf{a}^* = [0 \ 0.2 \ 0.05 \ 3 \ 1]^T;$$

– матрицу линейного преобразования вектора параметров

$$\mathbf{A} = \left[\begin{array}{cccc} 0.04 & 0.01 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{array} \right]^T;$$

- матрицу линейного преобразования

$$\mathbf{T} = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 \\ 4 & -2 & 0 & 2 & -4 \\ 6 & 0 & -2 & 0 & 6 \\ 4 & 2 & 0 & -2 & -4 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

На рис. 5 показан годограф $z(\omega)$. Для удобства построения точек годографа был введен переменный масштаб по $|z(\omega)|$:

$$|z(\omega)| = \left\{ \begin{array}{l} \lg \rho(\omega) + 1, & \rho(\omega) > 1, \\ \rho(\omega), & \rho(\omega) \leqslant 1; \end{array} \right.$$

и параметр ω вычислялся как $\operatorname{tg}(\widetilde{\omega})$, где $\widetilde{\omega} \in [0, \pi/2]$. Из формулировки критерия 2 следует, что замкнутая система робастно модальна и $\gamma_{\rm max} = 2.68$.

5. Исследование робастной модальности линейных дискретных систем

Обобщенный критерий может быть непосредственно использован для исследования робастной модальности линейных дискретных систем, так как при этом область Λ представляет собой замкнутую область, граница которой для типовых видов модальности может быть выражена в виде:

$$\lambda(\omega) = \left\{ \begin{array}{ll} e^{-\eta + j\omega}, \; (|\omega| < \eta/\mu \; \text{и} \; \mu \neq 0) \quad \text{или} \quad (|\omega| \leqslant \pi \; \text{и} \; \mu = 0); \\ e^{-\mu|\omega| + j\omega}, \; \eta/\mu \leqslant |\omega| < \pi \; \text{и} \; \mu \neq 0, \end{array} \right.$$

где $\eta \geqslant 0$ – степень устойчивости; $\mu \geqslant 0$ – степень колебательности; $\omega \in [-\pi,\pi]$. Учитывая также симметричность области Λ относительно вещественной оси плоскости λ , вещественность коэффициентов характеристического полинома и требование расположения всех корней характеристического полинома внутри области Λ , сформулируем критерий робастной модальности линейных дискретных систем.

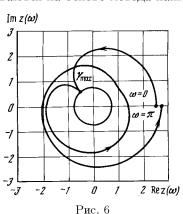
 $K p u \tau e p u \ddot{u} 3$. Для того, чтобы линейная дискретная система обладала заданным видом робастной модальности Λ , необходимо и достаточно, чтобы при изменении ω от 0 до π годограф $z(\omega)=\rho(\omega)e^{j\varphi^0(\omega)}$ обходил в положительном направлении 2n квадрантов координатной плоскости и не пересекал круг с центром в начале координат и радиусом γ .

Рассмотрим робастный вариант примера из [11].

Пример 3. Задана линейная дискретная система с объектом 2-го порядка $W_0(z)=rac{b_0+b_1z}{b_2+b_3z+z^2}$, цифровым регулятором $W_1(z)=rac{0.86-2z+1.16\,z^2}{-0.2\,z+0.2\,z^2}$ и единичной отрицательной обратной связью lpha=1. Вектор параметров объекта управления $\mathbf{b} = [b_0 \ b_1 \ b_2 \ b_3]^T$ принадлежит эллипсоиду с центром в точке $\mathbf{b}^0 = [0.041 \ 0.0453 \ 0.7412 \ -1.724]^T$ и полуосями 0,0004, 0,0023, 0,0371 и 0,0862. Требуется исследовать систему на соответствие степени колебательности $\mu = 0.5$.

Из формулировки критерия 3 и рис. 6, где показан годограф $z(\omega)$, следует, что замкнутая система обладает заданной степенью робастной колебательности, если размах параметрических возмущений γ находится в пределах от 0 до $\gamma_{\rm max} = 0.74$.

Критерий 3 может быть распространен на случай, когда параметры дискретного объекта управления оцениваются на основе метода наименьших квадратов или его



модификаций. Для метода наименьших квадратов оценка вектора в пространстве параметров представляет собой многомерный эллипсоид вида [12]:

(17)
$$B = \left\{ \mathbf{b} : (\mathbf{b} - \mathbf{b}^0)^T \mathbf{F}^T \mathbf{F} (\mathbf{b} - \mathbf{b}^0) \leqslant \gamma^2 \right\}.$$

Здесь ${\bf b}^0$ — вектор точечных оценок параметров; ${\bf F}$ — матрица регрессоров; γ — общий сомножитель полуосей эллипсоида. Вектор точечных оценок параметров определяется выражением: ${\bf b}^0 = {\bf V} {\bf F}^T {\bf y}$, где ${\bf y}$ — вектор измеренных значений отклика, ${\bf V} = ({\bf F}^T {\bf F})^{-1}$ — матрица дисперсий-ковариаций. Общий сомножитель γ вычисляется по критерию Фишера: $\gamma^2 = k\sigma^2 F(\delta,k,\nu)$, где k — размерность вектора параметров; σ^2 — дисперсия ошибки; δ — уровень значимости; ν — число степеней свободы оценки дисперсии ошибки; $F(\delta,k,\nu)$ — распределение Фишера.

Сравнивая выражения (3) и (17), приходим к тождеству $(\mathbf{B}^T\mathbf{B})^{-1} = \mathbf{F}^T\mathbf{F}$. Тогда, из (8) после соответствующих преобразований имеем:

(18)
$$\mathbf{K} = \mathbf{Q}(\omega)\mathbf{A}\mathbf{V}(\mathbf{Q}(\omega)\mathbf{A})^{T}.$$

Наряду с оценкой модальных свойств системы с заданным уровнем значимости δ оценки параметров объекта управления, критерий 3 позволяет определить минимальное значение δ , при котором указанные свойства сохраняются. Для этого необходимо вычислить максимальное значение $\gamma_{\rm max}$ и по таблице распределения Фишера найти соответствующее ему значение уровня значимости $\delta_{\rm min}$.

6. Заключение

Предложенный обобщенный критерий робастной модальности позволяет на основе единого подхода исследовать типовые виды модальности линейных непрерывных и линейных дискретных систем различной структуры с эллиптической неопределенностью параметров. Обобщенный критерий робастной модальности относится к критериям частотного типа и имеет с точки зрения практики инженерного проектирования удобную формулировку. Алгоритм критерия ориентирован на выполнение векторно-матричных вычислений и операций с комплексными числами, что делает целесообразным для его реализации применение специализированных программных средств (например, PC MatLAB).

ПРИЛОЖЕНИЕ

 \mathcal{A} о к а з а τ е л в с τ в о y τ в е p ж μ е н и я 1. Представим выражение (6) в виде: $\mathbf{q}(\omega) = \mathbf{Q}(\omega)(\mathbf{a}^* + \mathbf{A}\mathbf{b}^0) + \mathbf{Q}(\omega)\mathbf{A}(\mathbf{b} - \mathbf{b}^0),$ откуда выразим разность $\mathbf{b} - \mathbf{b}^0$: $\mathbf{b} - \mathbf{b}^0 = \mathbf{A}^{-1}\mathbf{Q}^{-1}(\omega)(\mathbf{q}(\omega) - \mathbf{q}^0(\omega)),$ где $\mathbf{q}^0(\omega) = \mathbf{Q}(\omega)(\mathbf{a}^* + \mathbf{A}\mathbf{b}^0);$ $\mathbf{A}^{-1},$ $\mathbf{Q}^{-1}(\omega)$ — псевдообратные матрицы соответствующих линейных преобразований. Тогда при подстановке в (3) выражения для разности $\mathbf{b} - \mathbf{b}^0$ имеем: $(\mathbf{A}^{-1}\mathbf{Q}^{-1}(\omega)(\mathbf{q} - \mathbf{q}^0))^T(\mathbf{B}^{-1})^T\mathbf{B}^{-1} \times (\mathbf{A}^{-1}\mathbf{Q}^{-1}(\omega)(\mathbf{q} - \mathbf{q}^0)) \leqslant \gamma$. После преобразований получим неравенство, содержащее квадратичную форму в левой части: $(\mathbf{q} - \mathbf{q}^0)^T(\mathbf{Q}(\omega)\mathbf{A}\mathbf{B}(\mathbf{Q}(\omega)\mathbf{A}\mathbf{B})^T)^{-1}(\mathbf{q} - \mathbf{q}^0) \leqslant \gamma^2$. Обратная матрица квадратичной формы $\mathbf{K} = \mathbf{Q}(\omega)\mathbf{A}\mathbf{B}(\mathbf{Q}(\omega)\mathbf{A}\mathbf{B})^T$ размерности 2×2 является симметрической, положительно полуопределенной. Отсюда следует, что область $\mathbf{Q}(\omega) = \{\mathbf{q}(\omega): \mathbf{b} \in B\}$ представляет собой либо эллипс или отрезок с центром в точке $\mathbf{q}^0(\omega)$, либо точку $\mathbf{q}^0(\omega)$. Приведем обратную матрицу квадратичной формы к каноническому виду $\mathbf{K} = \mathbf{C}\mathbf{D}\mathbf{C}^T$, где \mathbf{C} — ортонормированная матрица собственных чисел матрицы \mathbf{K} . Элементы матрицы \mathbf{K} ; \mathbf{D} — диагональная матрица собственных чисел матрицы \mathbf{K} . Элементы матрицы \mathbf{D} определяют вид и размеры области $\mathbf{Q}(\omega)$, а матрица \mathbf{C} задает ориентацию области $\mathbf{Q}(\omega)$ относительно базовой системы координат.

Параметр γ является общим сомножителем полуосей. Анализируя значения элементов матрицы **D**, получаем описание множества $Q(\omega)$ для различных случаев, указанных в формулировке утверждения 1.

 \mathcal{A} о казательство критерия 1. Согласно принципу аргумента [13] для того, чтобы номинальный полином семейства (1), соответствующий номинальному вектору параметров, $D^0(\lambda) = \mathbf{d}^T(\lambda)\mathbf{A}\mathbf{b}^0$, имел n-r корней, лежащих внутри области Λ , и r корней, лежащих за ее пределами, необходимо и достаточно, чтобы при таком изменении $\omega \in \Omega$, что точка $\lambda(\omega)$ обходит границу области Λ в положительном направлении, номинальный годограф $z^0(\omega) = \rho^0(\omega)e^{j\varphi^0(\omega)}$ имел приращение аргумента $2\pi(n-r)$. Согласно принципу отделения нуля [1] для того, чтобы все полиномы семейства (1) имели равное число корней, лежащих внутри области Λ , и число корней, лежащих за ее пределами, необходимо и достаточно, чтобы область $Q(\omega)$ при всех $\omega \in \Omega$ не содержала начало координат. Условие отделимости нуля от множества $Q(\omega)$ можно представить в виде неравенства $\rho^0(\omega)/r(\omega) > 1$, $\omega \in \Omega$, где $r(\omega)$ – расстояние между точкой $\mathbf{q}^0(\omega)$ и точкой пересечения отрезком $[\mathbf{0},\mathbf{q}^0(\omega)]$ внутреннего множества области $Q(\omega)$:

$$r(\omega)\!=\!\begin{cases} (a_q^{-2}\cos^2(\varphi^0-\Theta_q)+b_q^{-2}\sin^2(\varphi^0-\Theta_q))^{-1/2},\ a_q\!\neq\!0\ \text{if}\ b_q\!\neq\!0;\\ a_q,\ a_q\neq\!0\ \text{if}\ \sin(\varphi^0(\omega)-\Theta_q)=0;\\ b_q,\ b_q\neq\!0\ \text{if}\ \cos(\varphi^0(\omega)-\Theta_q)=0;\\ 0,\ \text{в остальных случаях}. \end{cases}$$

В первом случае выражение для $r(\omega)$ определяется из параметрического уравнения эллипса; во втором и третьем случаях внутреннее множество области $Q(\omega)$ представляет собой точку, удаленную от точки $\mathbf{q}^0(\omega)$ на величину соответственно a_q , b_q , при этом внутреннее множество области $Q(\omega)$ принадлежит отрезку $[\mathbf{0}, \mathbf{q}^0(\omega)]$; в остальных случаях точка пересечения отрезком $[\mathbf{0}, \mathbf{q}^0(\omega)]$ внутреннего множества области $Q(\omega)$ совпадает с точкой $\mathbf{q}^0(\omega)$. Введем вспомогательную функцию $\rho(\omega) = \gamma \rho^0(\omega)/r(\omega)$ (см. (10)) и перепишем условие отделимости нуля в виде: $\rho(\omega) > \gamma$. Таким образом, требования принципов аргумента и отделения нуля будут выполнены, если годограф $z(\omega) = \rho(\omega)e^{j\varphi^0(\omega)}$ будет иметь приращение аргумента $2\pi(n-r)$ и не будет пересекать круг с центром в начале координат и радиусом γ .

СПИСОК ЛИТЕРАТУРЫ

- 1. *Цыпкин Я. З., Поляк Б. Т.* Робастная устойчивость линейных систем // Итоги науки и техники. Техническая кибернетика. М.: ВИНИТИ, 1991. Т. 32. С. 3–31.
- 2. Джури Е. И. Робастность дискретных систем. Обзор // АиТ. 1990. № 5. С. 3–28.
- 3. Гусев Ю. М., Ефанов В. П., Крымский В. Г., Рутковский В. Ю. Анализ и синтез линейных интервальных динамических систем (состояние проблемы). І // Изв. АН СССР. Техн. кибернетика. 1991. № 1. С. 3–23.
- 4. *Рубанов В. Г., Подлесный В. Н.* Достаточный критерий робастной устойчивости замкнутых систем с интервальным объектом и фиксированным регулятором // Изв. вузов. Электромеханика. 1995. № 3. С. 43–48.
- 5. Подлесный В. Н., Рубанов В. Г. Простой частотный критерий робастной устойчивости одного класса линейных интервальных динамических систем с запаздыванием // АиТ. 1996. № 9. С. 131–139.
- 6. Soh C. B., Berger C. S., Dabke K. P. On the stability properties of polynomials with perturbed coefficients // IEEE Trans. Autom. Contr. 1985. V. AC-30. No. 10. P. 1033–1036.
- 7. Qiu L., Davison E. J. A simple procedure for the exact stability robustness computation of polynomials with affine coefficient perturbations // Systems and Control Letters. 1989. No. 13. P. 413–420.

- 8. Неймарк Ю. И. Робастная устойчивость линейных систем // ДАН СССР. 1991. Т. 319. \mathbb{N}° 3. С. 578–580.
- 9. *Цыпкин Я. З., Поляк Б. Т.* Частотные критерии робастной устойчивости и апериодичности линейных систем // АиТ. 1990. № 9. С. 45–54.
- 10. *Цыпкин Я. З., Поляк Б. Т.* Частотные критерии робастной модальности линейных дискретных систем // Автоматика. 1990. № 4. С. 3–9.
- 11. *Куо Б.* Теория и проектирование цифровых систем управления. М.: Машиностроение, 1986.
- 12. Вучков И., Бояджиева Л., Солаков Е. Прикладной линейный регрессионный анализ. М.: Финансы и статистика, 1987.
- Маркушевич А. И. Теория аналитических функций. Т. 1. Начала теории. М.: Наука, 1967.

Поступила в редакцию 13.08.97