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Abstract: In this paper, we consider a certain class of discrete pseudo-differential operators in a sharp convex cone
and describe their invertibility conditions in Ls-spaces. For this purpose we introduce a concept of periodic wave
factorization for elliptic symbol and show its applicability for the studying.
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1 Introduction

A classical pseudo-differential operator in Euclidean
space IR is defined by the formula [1, 2, 3, 4]

)= [ [ Awoeeiedcay,

Rm ]R’!YL

where the sign ~ over a function denotes its discrete
Fourier transform

u(§) = /u(x)e”fdac.

IRm

1.1 Multidimensional Fourier series and
symbols

Given function ug4 of a discrete variable T € Z™ we
define its discrete Fourier transform by the series

(Faua)(§) = = > e
™
EeT™ =[—m,m|™
where partial sums are taken over cubes
QN:{SEE VALRRES (:Z‘l,n-,fim),
 nax |Zr| < N}.

Let D C IR™ be a sharp convex cone, Dy =
DN Z™, and La(Dy) be a space of functions of dis-
crete variable defined on Dy, and A(Z) be a given
function of a discrete variable z € Z™. We consider
the following types of operators

Adud

uq(§)dg, (1)
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T € Dy,
and introduce the function

Y eTEA®R),

ie ™

£eTm.

Definition 1 The function /Td(f ) is called a symbol of
the operator Ag, and this symbol is called an elliptic
symbol if Aq(§) # 0,V€ € T™.

Our main goal is describing a periodic variant
of wave factorization for an elliptic symbol [9] and
showing its usability for studying invertibility for the
operator Ag.

1.2 Discrete projection operators

Let us denote Pp, projection operator on Dy, Pp, :
Lo(Z™) — La(Dy) so that for arbitrary function
Uqg € LQ(Zm)

) ua(@),
(Ppyua)(Z) = { a 0,

T € Dy
i ¢ Dy.

1.2.1 Periodic Cauchy kernel

If we consider a half-space case, then the Fourier im-
age of the operator Pp, is evaluated [10, 11, 12] and
we’ll demonstrate it in the following

Example 2 [f D = IR then

(FaPp,ua)(§',ém) =

™

1 . é-m — T + 4T
| / >m T
Tri g [ ua(€ ) cot 2

—T
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1.2.2 Periodic Bochner kernel
If D is a sharp convex cone C{ = {Z € Z™ : & =
(i'b Tt i'm)7£m > a‘"i‘/|7 T = ('%17 T >'im—1)7 a >
0} then we introduce the function

By(z) = Z e? s =¢4ir, £€T™, 7€(C?,
€Dy

and define the operator

(Baw)(€) = lim [ Ba(z — n)ua(m)dn,
2

Lemma 3 For arbitrary ug € Lo(Z™) the following
property
FaPp,uq = BiFquq

holds.
Proof: Let y (%) be an indicator of the set D. Thus

(Ppyua)(Z) = x+(F) - uq(Z).

Further, since the function x(Z) is not
summable, we can’t apply directly a convolution
property of the Fourier transform. We choose the
function €7 so the product yi(Z)e™T will be
summable for some admissible 7. Taking into account
a forthcoming passing to a limit under 7 — 04 we
have

Fyg(x+(2)e™T) = Ba(z).

Thus we can use the Fourier transform obtaining
convolution of functions By(z) and ug(§). It is left
passing to a limit. g

2 Multidimensional periodic Rie-
mann boundary value problem

2.1 A half-space case and a periodic one-
dimensional Riemann boundary value
problem [10, 11, 12]

For D = IR'" we will remind some author’s construc-
tions for discrete equations in a half-space. We have

By(z) = cot 5, 2= (¢&m +ir),

gl - (51;' e 7€m—1),7— > 0.

Thus (see example 1) we use a periodic one-
dimensional Riemann problem with a parameter £’ €
T™~! which is the following. Finding a pair of
functions ®* (¢’ &,,,) which are boundary values of
holomorphic in half-strips [Iy = {z € C : z =
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&m i, 7 > 0} such that these are satisfied a linear
relation

()€, &m) = G(€,&m) 2 (E)(E, &m) + 9(8),

£eT™,

for almost all £’ € T™ !, where G(£), g(¢) are given
periodic functions.

2.2 Essential multidimensional case

Let 1*) be a conjugate cone for D i.e.

B:{xERm:x~y>0,y€D},

and T(l*)) C C'™ be a set of the type T + 4 D.
For T = IR™ such a domain of multidimensional

complex space is called a radial tube domain over the

cone 1*) [7,8,9].
Let us define the subspace A(T™) C Lo(T™)

consisting of functions which admit a holomorphic
*

continuation into 7'( D) and satisfy the following con-
dition
sup / |Gq (€ + i7)|2dé < +o0. )
reb o
In other words, the space A(T™) C Lo(T™)

consists of boundary values of holomorphic in 7'(D)
functions.
Let us denote

B(T™) = Lo(T™) & A(T™),
so that B(T™) is a direct complement of A(T™) in
Lo(T™).

2.2.1 A jump problem

We formulate the problem by the following way: find-
ing a pair of functions ®* &+ € A(T™),d~ ¢
B(T™), such that

(&) -2 () =g(8), €T,
where g(&) € Lo(T™) is given.

3)

Lemma 4 The operator By : Lo(T™) — A(T™) is
a bounded projector. A function uq € Lo(Dy) iff its
Fourier transform ug € A(T™).

Proof: According to standard properties of the
discrete Fourier transform F);, we have

Fax (@)ua(@)) = lim [ Ba(z = m)ia(dn,
2
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where x4 (Z) is an indicator of the set Dy. It im-
plies a boundedness of the operator B;. The second
assertion follows from holomorphic properties of the
kernel B;(z). In other words for arbitrary function
v e A(T™) we have

/de—

It is an analogue of the Cauchy integral formula.

(n)dn, =z € T(l*))

O

Theorem 5 The jump problem has unique solution
for arbitrary right-hand side from Lo(T™).

Proof: Indeed it is equivalent to one-to-one rep-
resentation of the space Lo(Dy) as a direct sum of
two subspaces. If we’ll denote x4 (), x—(z) indica-
tors of discrete sets Dy, Z™ \ D4 respectively then the
following representation

ua (%) (%) + X~ (%)uq(7)

is unique and holds for arbitrary function uy €
Lo(Z™). After applying the discrete Fourier trans-
form we have

= X+(Z)ua

Faugq = Fy(x+uq) + Fy(x—ua),

where Fy(xtuq) € A(T™) according to lemma 2,
and thus Fd(X_ud) = Fyug — Fd(X+ud) S B(Tm)
because Fyug € Lo(T™). O

Example 6 If m = 2 and C’i is the first quadrant in
a plane then a solution of the jump problem is given

by formulas
/ / §1+ 17'1 —t
cot ———
T—0

OT(¢) = 4m lim
§o + 12 — 1o
oy

—g(§), T=(m,72)€C}.

g(t1,t2)dt1dts

e (5) =27 (¢)

2.2.2 A general statement

It looks as follows. Finding a pair of functions
dF o+ € A(T™),®~ € B(T™), such that

(&) = GOP (&) + g(8), @)

where G(§),g(&) are given periodic functions. If
G (&) = 1 we have the jump problem 3).

Like classical studies [5, 6] we want to use a spe-
cial representation for an elliptic symbol to solve the
problem (4).

£eTm,
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2.2.3 Associated singular integral equation

We can easily obtain so-called characteristic singu-
lar integral equation associated with multidimensional
periodic Riemann boundary value problem (4).

Let us denote @p, = I — Pp, and consider
so-called paired operator composed by two operators

A&l), A((f) of the following type

APy, + APQp, : Ly(Z™) = Ly(Z™)  (5)

One can easily obtain the following

Property 7 The invertibility of the operator (1) in the
space Lo(D,) is equivalent to invertibility of the oper-

ator (5) in the space Lo(Z™) with Al(jl) = Ag, A£12) =
1.

The Fourier image for the operator (5) is the fol-
lowing operator

a(€) — (AP (€)Ba+AY (€)(I-Ba)ia) (€) (6)

If D = IR then the operator (6) is a one-
dimensional singular integral operator with periodic
Cauchy kernel and a parameter &’ [10, 11, 12].

3 Periodic wave factorization

Definition 8 Periodic wave factorization for elliptic
symbol A(§) is called its representation in the form

Ag(8) = Ax(§)A=()

where the factors Ail(f),Ail(Q admit bounded

*
holomorphic continuation into domains T'(+ D).

3.1 Sufficient conditions

We’ll give here certain sufficient conditions for an ex-
istence of the periodic wave factorization for an ellip-
tic symbol.

Theorem 9 Ler an elliptic symbol Ay4(€) € C(T™)
be a such that

supp Fy (In Ag(€)) € DgU (=Dyg),  (7)
/da'rgAd(”nga'”):Ovkzlv'”vm' (8)

Then the symbol Aq(€) admits the wave factor-
ization.
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Proof: If we start from equality
Ad(€) = Ax(§)A=(¢)
then by logarithm we obtain
In Ag(€) =In A4(&) +In A_(€)

and we have a special kind of a jump problem.
Namely if we will denote by A;(T™) a subspace
of the space Lo(T™) consisting of functions which

*
admit a holomorphic continuation into 7'(— D) and

satisfy the condition (2) for 7 € — 1*) So evidently we
speak on a possibility of decomposition of the func-
tion In A4(§) into two summands one of which be-
longs to the space A(T"") and the second one belongs
to the space A;(T™). Let us denote

F~Y(In A4(¢)) = v(x).

If supp v C DyU(—Dy) then we have the unique
representation

V= X4V + XV

where 1 is an indicator of the discrete set +=D,.
Further passing to the Fourier transform and po-
tentiating we obtain the required factorization. O

Remark 10 The condition (7) is not necessary but we
have no an algorithm for constructing a periodic wave
factorization. For D = R} a such algorithm exists
always (see [12]).

3.2 Factorization and index

There is one point in previous considerations from
proof of the Theorem 2 for which one needs an ex-
planation. Indeed the function In A(&) is defined cor-
rectly because the condition (8) provides an absence
of bifurcation points. That’s why one can call this fac-
torization with vanishing index.

4 Invertibility of discrete operators

Lemmall If f € B(T™),g € Ai(T™) then f - g €
B(T™).

Proof:  According to properties of discrete
Fourier transform F; we have

(F M- 9)(@) — (F7Hf) = (Fylg) (@) =
Y h@E-9a@ = > [E-Da@),

geZ™ g€—=Dqg
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where f; = Fd_lf, g1 = Fd_lg and according to
lemma 2 supp g1 C —Dg.

Further since we have supp fi C Z™ \ (—Dgy)
then for x € Dy, y € —Dg we have ¥ — y € Dy so
that f1(Z — y) = 0 for such &, §. Thus supp f1* g1 C
Z™\ Dg. g

Theorem 12 If the elliptic symbol Aq4(&) € C(T™)
admits periodic wave factorization then the operator
Ay is invertible in the space La(Dg).

Proof: We will remind that according to the
property 1 an invertibility of the operator A, in the
space Lo(Dy) is equivalent to an invertibility of the
operator A;Pp, + IQp, in the space Lo(Z™). It is
easily concluding the last invertibility is equivalent to
solving the Riemann problem (4) for arbitrary right-
hand side g(¢) € Lo(Z™) with G(&) = A (€). If
we have the periodic wave factorization for the sym-
bol Ay(€) then

AL(©)DT(&) = AZHED (&) + Ax()g(6), 9
ceTm,

and we have a jump problem.

The first summand A (£)®* () € A(T™) ac-
cording to a holomorphic property, and the second one
AZL (6D (¢) € B(T™) according to the lemma 3.
Taking into account the theorem 2 we conclude that
the Riemann problem (9) has a unique solution for ar-
bitrary g(&) € Lo(T™). O

Conclusion

These “discrete” considerations can be transferred on
more general situations and operators. It will be a sub-
ject of forthcoming papers of the author.
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