
ISSN 0012-2661, Differential Equations, 2017, Vol. 53, No. 10, pp. 1318–1328. c© Pleiades Publishing, Ltd., 2017.
Original Russian Text c© V.B. Vasil’ev and V.G. Nikolaev, 2017, published in Differentsial’nye Uravneniya, 2017, Vol. 53, No. 10, pp. 1351–1361.

PARTIAL DIFFERENTIAL EQUATIONS

Schwarz Problem
for First-Order Elliptic Systems on the Plane

V. B. Vasil’ev1∗ and V. G. Nikolaev2∗∗

1Belgorod National Research University, Belgorod, 308015 Russia
2Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, 173003 Russia

e-mail: ∗vbv57@inbox.ru, ∗∗vg14@inbox.ru

Received February 6, 2017

Abstract—We consider the Schwarz problem for J-analytic functions for the case in which
the Jordan basis Q of the matrix J contains complex conjugate vectors. Conditions on the
matrix Q are obtained under which there exists a unique solution of the Schwarz problem in
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1. INTRODUCTION

The study of boundary value problems for various classes of analytic functions has a long his-
tory [1–3] and has been developed in the recent years in several directions both theoretically [4, 5]
and from the viewpoint of applications to problems in the general theory of boundary value prob-
lems for (pseudo)differential equations [6–8].

The Riemann–Hilbert problem [1, p. 264; 2, p. 140] of finding an analytic function in a domain
from the boundary values of its real part is one of the main boundary value problems. One possible
generalization of this problem is the Schwarz problem for Douglis analytic functions, a special case
of which is considered in the present paper. Note that the Schwarz problem has applications in the
theory of second-order elliptic systems on the plane [9].

2. MAIN DEFINITIONS AND NOTATION

Let J ∈ Cn×n be a matrix without real eigenvalues. A Douglis analytic function (or a J-analytic
function with matrix J) in a domain D ∈ R2 is a complex n-vector function φ = φ(z) ∈ C1(D)
satisfying the equation

∂φ

∂y
− J

∂φ

∂x
= 0, z = x+ iy ∈ D, (1)

in the domain D [4–7].

In the scalar case (n = 1), a J-analytic function in a domain D with J = λ, Im λ �= 0, will
be called a λ-holomorphic function in D. We adopt the convention that the subscript “λ” or “μ”
on a function indicates that the function belongs to the class of λ- or μ-holomorphic functions,
respectively; for example, fλ, gλ, gμ, etc. Polynomials of the form fλ(z) = (x+ λy)n, n = 1, 2, . . . ,
may serve as examples of λ-holomorphic functions.

Remark 1. Let λ = a+ bi, where a, b ∈ R and b �= 0. One can readily show that a holomorphic
function f(x, y) (λ = i) is taken to a λ-holomorphic function fλ(x

′, y′) by the invertible linear
transformation x = x′+ay′, y = by′. Hence the properties of λ-holomorphic functions are the same
as those of ordinary holomorphic functions.

However, this is not true for n > 1 in the general case (see Example 1 below).

Definition 1. We say that a function φ(z) corresponds to a matrix J if it satisfies Eq. (1).
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As was shown in the monograph [4, p. 35], the complex system (1) of first-order partial differential
equations is elliptic. Consider the following Schwarz boundary value problem [10–12] for Eq. (1).

Let D ⊂ R2 be a finite simply connected domain bounded by a contour Γ. Find a J-analytic
function φ(z) ∈ C(D) with matrix J in D satisfying the boundary condition

Re φ(z)|Γ = ψ(t), (2)

where ψ(t) = (ψ1(t), . . . , ψn(t))
T ∈ C(Γ) is a given real vector function.

For ψ ≡ 0, we speak of the homogeneous Schwarz problem. It has the obvious solutions in the
form of constant vector functions φ = ic, c ∈ Rn, which are usually called trivial (or constant)
solutions.

It is well known that the only solutions of the homogeneous problem (2) for n = 1 are constants
[13, p. 123]. Let us show that this is not always the case for n = 2.

Example 1. Let

J =

(
−1 + 3i 1

3 + 4i 1− i

)
, φ(z) =

(
x2 + 3y2 − 1− 2xy i

x2 + 3y2 − 1− (4x2 + 2xy + 4y2) i

)
.

One can readily verify that the function φ(z) corresponds to the matrix J, which has a multiple
eigenvalue λ = i. One has Re φ(z)|Γ = 0 on the ellipse

Γ : x2 + 3y2 = 1.

Theorem 4 below in particular gives conditions onto the Jordan forms of n × n matrices under
which such examples are impossible (that is, the homogeneous Schwarz problem only has the trivial
solutions).

3. SOME AUXILIARY ASSERTIONS

Let D ⊂ R2 be a finite simply connected domain whose boundary ∂D = Γ is a Lyapunov
curve (contour). Let D be the closure of D; i.e., D = D � Γ. By C1,σ(Γ), σ ∈ (0, 1), we denote
the class of functions whose first derivatives are Hölder continuous on Γ. Accordingly, C1,σ(D ) is the
class of functions whose first partial derivatives are Hölder continuous in the closed domain D.

We will use the following three theorems.

Theorem 1. Assume that Γ = ∂D is a Lyapunov contour and the function ϕ(t) belongs to the
class C1,σ(Γ). Then there exists a unique (up to a constant) λ-holomorphic function f(z) ∈ C1,σ(D )
in D satisfying the boundary condition Re f(z)|Γ = ϕ(t).

Theorem 1 follows from the well-known similar result [2, p. 155] for holomorphic functions
(λ = i) and from Remark 1.

Theorem 2 [12]. Assume that Γ = ∂D is a Lyapunov contour and ( Im λ)( Im μ) < 0. Then
the problem

(fλ + gμ)|Γ = ϕ(t), fλ, gμ ∈ Hσ(D) (3)

is solvable up to a constant for any boundary function ϕ(t) in the Hölder class Hσ(Γ), 0 < σ < 1.

Theorem 3 [10]. Assume that Γ = ∂D is a Lyapunov contour and all eigenvalues of the matrix
J ∈ Cn×n lie above or below the real axis simultaneously. Then the null space of the Schwarz
problem is finite-dimensional in each of the classes Hσ(D ), 0 < σ < 1. Here the functions φ(z)
with the property Re φ(z) ≡ 0 are taken into account as well.

Further, let us prove three lemmas that will be used in the proof of the main Theorem 4.

Theorem 2 was proved in [12] for the special case of μ = λ̄ with the use of boundary properties of
Cauchy type integrals. Let us present an alternative proof for this case, which permits considering
a slightly wider function class. The following assertion holds.
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Lemma 1. Assume that Γ = ∂D is a Lyapunov contour and the boundary function ϕ(t) belongs
to the class C1,σ(Γ). If μ = λ̄, then there exists a unique solution (up to a constant) of problem (3)
in the function classes fλ, gμ ∈ C1,σ(D ).

Proof. Set ϕ = ϕ1 + iϕ2, where ϕ1, ϕ2 ∈ C1,σ(Γ) are real functions. According to Theorem 1,
we construct a λ-holomorphic function p(z) ∈ C1,σ(D ) from the condition Re p(z)|Γ = ϕ1(t) and
a λ̄-holomorphic function h(z) ∈ C1,σ(D ) from the condition Re h(z)|Γ = ϕ2(t). Then the functions
p̄ and h̄ belong to the class C1,σ(D ) as well.

Set Im p(z)|Γ = ϕ∗
1 and Im h(z)|Γ = ϕ∗

2. We have

(p(z) + ih̄(z) + p̄(z) + ih(z))|Γ = ϕ1 + iϕ∗
1 + i(ϕ2 − iϕ∗

2)

+ ϕ1 − iϕ∗
1 + i(ϕ2 + iϕ∗

2) = 2(ϕ1 + iϕ2). (4)

We introduce the following notation for the functions on the left-hand side in Eq. (4) :

fλ(z) =
1

2
[ p(z) + ih̄(z)], gμ(z) = gλ̄(z) =

1

2
[ p̄(z) + ih(z)]. (5)

The functions (5) give the desired solution fλ, gμ of problem (3) for μ = λ̄ in the class C1,σ(D ).
The proof of the lemma is complete.

Lemma 2. Assume that Γ = ∂D is a Lyapunov contour, λ, μ ∈ C \ R, and a number l ∈ C

satisfies the following condition : |l| = 1 if λ �= μ, and l is an arbitrary number if λ = μ. Then the
problem

(fλ + gμ + lgμ)|Γ = ϕ(t), fλ, gμ ∈ C1,σ(D ) (6)

is solvable up to a constant for any boundary function ϕ(t) ∈ C1,σ(Γ).

Proof. The case of λ = μ in problem (6) for arbitrary l ∈ C is equivalent to the case of μ = λ̄
in problem (3) and hence follows from Lemma 1.

Let λ �= μ and l = 1. We make the substitutions fλ = u+ iv, gμ = p+ iq, and ϕ = ϕ1 + ϕ2i in
problem (6) and obtain

(u+ iv + p− iq + p+ iq)|Γ = (u+ iv + 2p)|Γ = ϕ1 + ϕ2i, ϕ1, ϕ2 ∈ C1,σ(Γ). (7)

By (7), v = ϕ2 ∈ C1,σ(Γ) on Γ. Hence one can reconstruct the function fλ = u+ iv ∈ C1,σ(D )
(up to a constant) by Theorem 1. Then we find the boundary value of the real part p of the func-
tion gμ from Eq. (7); namely, p|Γ = (1/2)(ϕ1−u) ∈ C1,σ(Γ). From the last equation, we reconstruct
the function gμ = p+ iq ∈ C1,σ(D ) by Theorem 1.

Now let l ∈ C and |l| = 1. Take an a ∈ C such that l = ā/a. We multiply both sides of Eq. (6)
by a and obtain

(afλ + agμ + āgμ)|Γ = aϕ(t). (8)

Set
f ∗
λ = afλ, g∗μ = āgμ, ϕ∗ = aϕ. (9)

(The notation f ∗
λ and g∗μ for the functions is justified, because it is obvious that the classes of λ-,

and μ-holomorphic functions are invariant with respect to multiplication by scalars.) It is also
obvious that ϕ∗(t) ∈ C1,σ(Γ) if ϕ(t) ∈ C1,σ(Γ). We substitute (9) into (8) and obtain the relation
(f ∗

λ + g∗μ + g∗μ)|Γ = ϕ∗(t), which, together with the already established solvability of problem (6) for
l = 1, implies the solvability of problem (6) for |l| = 1. The proof of the lemma is complete.

The same scheme can be used to prove the following assertion.
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Lemma 3. Let Γ = ∂D be a Jordan curve, and let the assumptions of Lemma 2 be satisfied.
Then the homogeneous problem

(fλ + gμ + lgμ)|Γ = 0, fλ, gμ ∈ C(D), (10)

has only the trivial solutions.

Proof. Let λ �= μ, l = 1. We set ϕ ≡ 0 in Eq. (7) and find that (u+iv+2p)|Γ = 0. It follows that
v = 0 on Γ. Consequently, u+ iv = const in D. Thus, p = const on Γ, and hence p+ iq = const
in D. The general case of |l| = 1 can be considered by analogy with Lemma 2.

Now let λ = μ. The problem (10) acquires the form

(fλ + gλ + lgλ)|Γ = 0.

Thus, we have the equality of two λ- and λ̄-holomorphic functions on a Jordan contour Γ. This is
only possible if these functions are constant [13, p. 123]. The proof of the lemma is complete.

4. MAIN THEOREM

Let us proceed to the statement of the main result of the paper, Theorem 4. Let xk be the
complex conjugate of a vector xk ∈ Cn. Let yk ∈ Cn. We define n × n matrices Q, J1, and J by
the formulas

Q = (x1, . . . ,xm,x1 + l1x1, . . . ,xm + lmxm,y1, . . . ,ym1
),

lk ∈ C, k = 1, . . . ,m, 2m+m1 = n, detQ �= 0,

J1 = diag[λ1, . . . , λm, μ1, . . . , μm, η, . . . , η︸ ︷︷ ︸
m1

], J = QJ1Q
−1.

(11)

In accordance with the definition of J-analytic function, we assume that all eigenvalues of the
matrix J1 have nonzero imaginary parts. The following theorem holds.

Theorem 4. Let J = QJ1Q
−1, where the matrices Q and J1 are given by formulas (11).

Further, assume that if λk �= μk, then lk = 0 or |lk| = 1. If λk = μk, then the number lk ∈ C may
be arbitrary. Then the following assertions hold.

1. If Γ = ∂D is a Lyapunov contour and ( Im λk)( Im μk) > 0, k = 1, . . . ,m, then the Schwarz
problem (2) has a unique solution φ(z) ∈ Hσ(D ) up to a constant vector for each boundary function
ψ(z) ∈ Hσ(Γ), 0 < σ < 1.

2. If Γ = ∂D is a Lyapunov contour, the function ψ(z) belongs to the class C1,σ(Γ), and |lk| = 1
whenever λk �= μk, then the Schwarz problem has a unique solution φ(z) ∈ C1,σ(D ).

3. If Γ = ∂D is a Jordan curve and |lk| = 1 whenever λk �= μk, then the homogeneous Schwarz
problem (2) has only the trivial solutions in the function class φ(z) ∈ C(D ).

Proof. We substitute the expression J = QJ1Q
−1 into Eq. (1), multiply both sides by the

matrix Q−1, and obtain
∂

∂y
(Q−1φ)− J1

∂

∂x
(Q−1φ) = 0. (12)

We denote the vector function occurring in Eq. (12) by

φ0(z) = Q−1φ(z) = (f1, . . . , fm, g1, . . . , gm, h1, . . . , hm1
)T, 2m+m1 = n. (13)

It follows from Eq. (12) by virtue of the structure (11) of the matrix J1 that fk, gk, and hk in
Eq. (13) are arbitrary λk-, μk-, and η-holomorphic functions, respectively.

Set

fk(z) = uk + ivk, gk(z) = pk + iqk, k = 1, . . . ,m; hk(z) = rk + isk, k = 1, . . . ,m1, (14)
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where the functions uk, vk, pk, qk, rk, and sk are real. Then, in view of Eqs. (11), (13), and (14),
the function

φ(z) = Qφ0(z) =

⎛
⎜⎝

a11 . . . a1m ā11 + l1a11 . . . ā1m + lma1m b11 . . . b1m1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1 . . . anm ān1 + l1an1 . . . ānm + lmanm bn1 . . . bnm1

⎞
⎟⎠

× (u1 + iv1, . . . , um + ivm, p1 + iq1, . . . , pm + iqm, r1 + is1, . . . , rm1
+ ism1

)T (15)

is the general solution of Eq. (1) for the type of matrices under study.

In view of the solution (15), the boundary condition (2) is equivalent to the following system of
equations on the contour Γ :

Re

[ m∑
k=1

(a1k(uk + ivk) + (ā1k + lka1k)(pk + iqk)) +

m1∑
k=1

b1k(rk + isk)

]∣∣∣∣
Γ

= ψ1(t),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Re

[ m∑
k=1

(ank(uk + ivk) + (ānk + lkank)(pk + iqk)) +

m1∑
k=1

bnk(rk + isk)

]∣∣∣∣
Γ

= ψn(t).

(16)

We introduce the following notation for the first m columns of the matrix Q in (11), or, which
is the same, of the matrix Q in (15) :

xk = x′
k + x′′

ki, x′
k,x

′′
k ∈ R

n, k = 1, . . . ,m. (17)

Let us treat system (16) as an inhomogeneous system of n linear algebraic equations for the 2m
variables u1, v1, . . . , um, vm. Let us show that the n× 2m matrix

Q̃ = (x′
1,−x′′

1 , . . . ,x
′
m,−x′′

m) (18)

of this system contains at least one nonzero 2m× 2m minor.

Assume the contrary. Then rank Q̃ < 2m and hence

α1x
′
1 + β1x

′′
1 + · · · + αmx

′
m + βmx

′′
m = 0, (19)

where the real numbers αk and βk are not all zero simultaneously.

Since Eq. (19) can in view of notation (17) be rewritten in the form

Re [(α1 − iβ1)x1 + · · · + (αm − iβm)xm] = 0,

we have
(α1 − iβ1)x1 + · · ·+ (αm − iβm)xm = iz, z ∈ R

n. (20)

We apply complex conjugation to both sides of (20) and obtain

(α1 + iβ1)x1 + · · ·+ (αm + iβm)xm = −iz, z ∈ R
n. (21)

We add Eqs. (20) and (21) and find that a nontrivial linear combination of the vectors xk and xk

is zero; on the other hand, these vectors are linearly independent, which follows from the fact that

the matrix Q is nonsingular. This contradiction shows that rank Q̃ = 2m.

Let Q̃1 be a nonsingular 2m×2m submatrix of the matrix Q̃ defined in (18). Note that if ξ ∈ C,
then −Re ξ + i Im ξ = −ξ. Hence

Re [a{−p − Re [l(p − iq)] + i(q + Im [l(p− iq)])}] + Re [(ā+ la)(p+ iq)]

= Re [a(−p+ iq)]− Re [al(p− iq) ] + Re [ā(p+ iq)] + Re [al(p+ iq)]

= Re [a(−p+ iq)]− Re [a(−p + iq) ]± Re [al(p + iq)] = 0 (22)

for any numbers a, l ∈ C.
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Formula (22) permits one to find the solution of the nonsingular subsystem of (16) with matrix Q̃1

for the variables u1, v1, . . . , um, vm. Indeed, let us make the following substitution in each of the
equations in system (16) :

uk = uk(pk, qk) = −pk − Re [lk(pk − iqk)],

vk = vk(pk, qk) = qk + Im [lk(pk − iqk)], k = 1, . . . ,m.
(23)

Then, in view of (22),

Re {a1k[uk(pk, qk) + ivk(pk, qk)] + (ā1k + lka1k)(pk + iqk)} = 0 (24)

for each k = 1, . . . ,m.

Remark 2. Without loss of generality, we assume that the matrix Q̃1 corresponds to the first 2m
equations in system (16).

Thus, the unique solution of the inhomogeneous subsystem with matrix Q̃1, det Q̃1 �= 0, of the
linear algebraic system (16) for the variables uk, vk, k = 1, . . . ,m, can be found in the form

uk = −pk − Re [lk(pk − iqk)] + wk(ψ1, . . . , ψn, r1, s1, . . . , rm1
, sm1

),

vk = qk + Im [lk(pk − iqk)] + w̃k(ψ1, . . . , ψn, r1, s1, . . . , rm1
, sm1

),
(25)

where wk(·) and w̃k(·), k = 1, . . . ,m, are linear functions of their arguments. Here

(w1, . . . , wm, w̃1, . . . , w̃m)
T = (Q̃1)

−1(ψ1 + κ1(rk, sk), . . . , ψ2m + κ2m(rk, sk))
T, (26)

where κj(·) are linear functions of the variables rk and sk, k = 1, . . . ,m1.

Indeed, the unknowns uk, vk, pk, and qk cancel out by virtue of Eqs. (23) and (24) after the
substitution of the expressions (25) into the first 2m equations in system (16). As a result, we obtain

an inhomogeneous system for the variables wk and w̃k, whose matrix coincides with Q̃1; hence
Eq. (26) follows.

For each k = 1, . . . ,m, let us multiply the second equation in (25) by i and add it to the first
equation. Then, in view of the relation −Re ξ + i Im ξ = −ξ and notation (14), we have

uk + ivk − pk + iqk − [lk(pk − iqk)] = uk + ivk − pk + iqk − lk(pk + iqk)

= (fk − gk − lkgk)|Γ = wk + iw̃k = ϕk, (27)

where we recall that fk and gk are arbitrary λk- and μk-holomorphic functions, respectively.

Without loss of generality, we can assume that the signs in front of the functions gk in Eq. (27)
are “+ .” Further, all transformations carried out above are invertible. Hence if m1 = 0, i.e.,
n = 2m, in Eqs. (11), then, in view of relations (25)–(27), the Schwarz problem (2) is equivalent to
the following system of m independent scalar boundary value problems for functional equations:

(fk+gk+lkgk)|Γ=wk+iw̃k=ϕk, k=1, . . . ,m, where

{
fk, gk∈Hσ(D ) for ϕk∈Hσ(Γ),

fk, gk∈C1,σ(D ) for ϕk∈C1,σ(Γ),
(28)

and the class of the boundary Γ and the values of lk ∈ C depend on which of the assertions of the
theorem is considered.

For m1 = 0, the functions κj(·) are lacking in Eq. (26). Hence the following three assertions
hold for n = 2m.

1◦. Assume that the boundary function ψ in condition (2) belongs to the class Hσ(Γ), where
Γ is a Lyapunov curve. All the functions ϕk = wk+ iw̃k in problems (28) belong to the class Hσ(Γ)
as well by virtue of Eq. (26). Hence the assertion of part 1 of Theorem 4 follows from Lemmas 1
and 2 or from Theorem 2.
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2◦. Assume that the boundary function ψ in condition (2) belongs to the class C1,σ(Γ), where Γ is
a Lyapunov curve. Then the functions ϕk = wk + iw̃k in problems (28) belong to the class C1,σ(Γ)
as well by virtue of Eq. (26). Hence the assertion of part 2 of Theorem 4 follows from Lem-
mas 1 and 2.

3◦. Assume that the curve Γ in condition (2) is a Jordan curve and ψ ≡ 0. Then all the
functions ϕk in problems (28) are identically zero by virtue of Eq. (26). As a result, the assertion
of part 3 of Theorem 4 follows from Lemma 3.

Now consider the more complicated case of m1 = n− 2m > 0. Then the boundary functions wk

and w̃k, k = 1, . . . , 2m, in Eq. (26) additionally depend on the a priori unknown values of the func-
tions rk and sk on the contour Γ. To sidestep this difficulty, we make the following transformations.

We substitute the solutions (25) with known functions wk and w̃k determined by Eq. (26) into
the remaining m1 equations in system (16). Then, by virtue of Eq. (24), we obtain the following
linear algebraic system after transposing the functions ψk to the right-hand side:

L1(r1, s1, . . . , rm1
, sm1

) = L′
1(ψ1, . . . , ψn),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lm1
(r1, s1, . . . , rm1

, sm1
) = L′

m1
(ψ1, . . . , ψn),

(29)

where Lk(·) and L′
k(·) are linear functions of their arguments.

Since the functions ψk are defined on the contour Γ, we can rewrite system (29) in view of
notation (14) in the form

L′
1(·)|Γ = L1(·)|Γ = Re [c11h1 + · · ·+ c1m1

hm1
]|Γ = Re ξ1(z)|Γ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L′
m1

(·)|Γ = Lm1
(·)|Γ = Re [cm11h1 + · · ·+ cm1m1

hm1
]|Γ = Re ξm1

(z)|Γ,
(30)

where ckj ∈ C and all the functions hk and xik, k = 1, . . . ,m1, are η-holomorphic in D according
to (11) and (13). Equations (30) mean that the following algebraic system holds for the variable
functions hk = hk(z), k = 1, . . . ,m1, defined in the domain D :

c11h1 + · · ·+ c1m1
hm1

= ξ1(z) + c1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cm11h1 + · · ·+ cm1m1
hm1

= ξm1
(z) + cm1

,

(31)

where c1, . . . , cm1
∈ C.

The right-hand side of system (31) is known. Indeed, the functions L′
k(·) ∈ Hσ(Γ) in system (29)

depend only on the functions ψ1, . . . , ψn and on the matrix Q defined in (11); i.e., they are given
by the assumptions of the theorem. Hence the η-holomorphic functions ξk(z), k = 1, . . . ,m1, can
be reconstructed according to Theorem 1 from the boundary values L′

k(·) of their real parts known
from system (30).

To find hk from system (31), let us show that its determinant is nonzero,

Δ2 =

∣∣∣∣∣∣∣
c11 . . . c1m1

. . . . . . . . . . . . . . . .

cm11 . . . cm1m1

∣∣∣∣∣∣∣
�= 0. (32)

Assume the contrary: Δ2 = 0. Note that the entries of the determinant Δ2 are uniquely deter-
mined by the matrix Q, which is a Jordan basis of the matrix J. Further, the determinant Δ2 is
independent of the matrix J1 in (11); i.e., it depends neither on the eigenvalues of J nor on the
contour Γ.
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Hence let Γ be a Lyapunov contour. Consider the homogeneous Schwarz problem (ψ ≡ 0) for
a matrix J∗ with the same Jordan basis Q as J and with all eigenvalues lying above the real axis.
Then all functions L′

k(·) in systems (29) and (30) are zero, and hence we assume without loss of
generality that the right-hand side of system (31) is zero.

The resulting homogeneous system (31), whose determinant (32) is zero by assumption, has
infinitely many linearly independent solutions for the η-holomorphic functions hk(z) ∈ Hσ(D ).
Such solutions can readily be found, say, in the form of polynomials hk = rk + isk = a(x + ηy)n,
a ∈ C, n = 1, 2, . . . Let us substitute the boundary values of these solutions into the right-hand
side of Eq. (26) and hence find the functions wk, w̃k for problems (28).

Further, we construct the solutions of problems (28) with the use of Theorem 2 of Lemmas 1
and 2 depending on the numbers lk. Then we find the function φ(z) by formula (15). It is non-
constant, because so are the functions hk. One can construct infinitely many such solutions φ(z)
of the homogeneous Schwarz problem, which contradicts Theorem 3. The resulting contradiction
means that Δ2 �= 0.

Thus, system (31) uniquely (up to a constant) determines the η-holomorphic functions hk =
rk + isk, k = 1, . . . ,m1. They belong to the classes Hσ(D) or C1,σ(D) depending by virtue of
system (29) on the class of the boundary vector function ψ.

Let us substitute the boundary values of the functions rk and sk into the right-hand side of
Eq. (26). Further, we substitute the resulting functions wk and w̃k into Eq. (25) and find the
solution of system (16) on the contour Γ. Indeed, as was mentioned above, the functions (25) are
a solution of the first 2m equations in this system, because the unknowns cancel each other out.
As to the remaining m1 equations in system (16), the functions (25) are their solution, because the
left- and right-hand sides coincide on the contour Γ.

Further, to determine the functions uk and vk, we use system (28), in which the boundary values
of the functions ϕk are known owing to Eqs. (25). Then we carry out the same argument as in 1◦–3◦

above. The proof of the theorem is complete.

By way of remark, note the following. Straightforward computations show that if x ∈ Cn

(or x ∈ Rn), l ∈ C, and |l| = 1, then the vector x+ lx is a multiple of a real vector.

5. SOME COROLLARIES OF THE SCHEME
OF PROOF OF THE MAIN THEOREM

Let us apply Theorem 4 to matrices J ∈ C2×2 with distinct eigenvalues λ and μ. Let Q = (x,y)
be a Jordan basis of the matrix J.

First, assume that the matrix Q is real. We make the substitutions φ = Qφ∗ and J = Q∗J1(Q
∗)−1

in Eq. (1), where J1 = diag[λ, μ]. Then the Schwarz problem (2) splits into two independent
boundary value problems for λ- and μ-holomorphic functions, respectively, which can be solved
with the use of Theorem 1.

Now assume that only the vector y belongs to R2. We write it in the form y = ax+ bx, a, b ∈ C.
Here a �= 0. (Otherwise, the vector y would not be real.) By Cramer’s formulas, from the last
relation we obtain

a =
det(y,x)

det(x,x)
, b =

det(x,y)

det(x,x)
, l =

b

a
=

det(x,y)

det(y,x)
= −det(x,y)

det(x,y)
, y ∈ R

2,

whence it follows that |l| = 1.

As a result, we have the relation x + ba−1x = a−1y, or x + l x = a−1y, where l ∈ C, |l| = 1.
The matrix Q = (x, a−1y) is a Jordan basis of the same matrix J. Thus, the matrix J admits the
representation (11). Hence, in view of Theorem 1 and part 2 of Theorem 4, we have proved
the following theorem.

Theorem 5. Assume that Γ = ∂D is a Lyapunov contour and the matrix J ∈ C2×2 has distinct
eigenvalues and at least one real eigenvector. Then the Schwarz problem has a unique solution
φ(z) ∈ C1,σ(D ) for any boundary function ψ(z) ∈ C1,σ(Γ).
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The matrix J1 in Eqs. (11) was chose to be diagonal. However, the scheme of proof of Theorem 4
also applies to some nondiagonal matrices J1, i.e., matrices J = QJ1Q

−1 with nondiagonal Jordan
form.

The description of the general case is rather awkward, and hence we restrict ourselves to dimen-
sion n = 4. Consider the matrix J = QJ1Q

−1, where

J1 =

⎛
⎜⎜⎜⎜⎝

λ 0 0 0

1 λ 0 0

0 0 μ 0

0 0 1 μ

⎞
⎟⎟⎟⎟⎠, Q = (x,y,x + l1x,y + l2y), l1, l2 ∈ C, x,y ∈ C

4,

( Im λ)( Im μ) > 0,

{
|l1| = 1, |l2| ∈ {0, 1} for λ �= μ,

l1, l2 are arbitrary numbers for λ = μ.

(33)

Let us show that the following theorem holds.

Theorem 6. Let J = QJ1Q
−1, where the matrices J1 and Q are defined in (33). Further,

assume that Γ = ∂D is a Lyapunov contour and the boundary function ψ(z) belongs to the
class C1,σ(Γ). Then the Schwarz problem (2) has a unique solution φ(z) ∈ Hσ(D ).

Proof. The proof is based on that of Theorem 4 and is carried out by the same scheme. Set

φ0(z) = Q−1φ(z) = (f1, f2, g1, g2)
T (34)

by analogy with (13).

In this case, the functions f1 and g1 in (34) are arbitrary λ- and μ-holomorphic functions,
respectively, by virtue of the structure (33) of the matrix J1. Further,

f2(z) = y
∂f1(z)

∂x
+ h1(z), g2(z) = y

∂g1(z)

∂x
+ h2(z), (35)

where again h1 and h2 are arbitrary λ- and μ-holomorphic functions, respectively.

Here we deal with the case of n = 2m in the proof of Theorem 4. Hence, just as in the proof of
Theorem 4, we obtain a system similar to system (28) for n = 4. It consists of the following two
functional equations:

(f1 + g1 + l1g1)|Γ = ϕ1(ψ1, . . . , ψn), |l1| = 1,

(f2 + g2 + l2g2)|Γ = ϕ2(ψ1, . . . , ψn), |l2| = {0, 1}. (36)

Indeed, the derivation of Eqs. (28) only uses the fact that fk and gk are complex functions; none
of their other properties were used.

By Lemma 2, the first equation in system (36) for |l1| = 1 has a unique solution f1, g1 ∈ C1,σ(D ).
By definition, this means that

f ′
1 =

∂f1(z)

∂x
∈ Hσ(D ), g′1 =

∂g1(z)

∂x
∈ Hσ(D ). (37)

In view of Eqs. (37) and (35), the second equation in system (36) can be written in the form

(yf ′
1 + h1 + yg′1 + h2 + l2yg

′
1 + l2h2)|Γ = ϕ2;

i.e.,

(h1 + h2 + l2h2)|Γ = ϕ2 − (yf ′
1 + yg′1 + l2yg

′
1)|Γ ∈ Hσ(Γ). (38)
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It remains to note that problem (38) has a unique solution h1, h2 in the function class Hσ(D) by
Lemma 2 for |l2| = 1 and by Theorem 2 for l2 = 0. In conclusion, we construct the desired solution
of the Schwarz problem (2) by formula (15).

The case of λ = μ can be treated in a similar way with the use of Lemma 1. The proof of the
theorem is complete.

Remark 3. Obviously, Theorem 6 can be generalized to the dimensions n = 4k, k = 1, 2, . . .
In this case, the main diagonal of the Jordan form of the matrix J must contain blocks J1 of the
form (33), and the matrix of the Jordan basis should be constructed of matrices Q of the form (33).
Then the Schwarz problem splits into k independent problems similar to those considered in the
proof of Theorem 6.

6. CONSTRUCTION OF NONTRIVIAL SOLUTIONS
OF THE HOMOGENEOUS SCHWARZ PROBLEM IN AN ARBITRARY DOMAIN

As a corollary of the proof of Theorem 6, we present an algorithm for constructing nontriv-
ial solutions of the homogeneous Schwarz problem. Let n = 4. We slightly change the matrix
J = QJ1Q

−1 in (33); namely, we set

J1 =

⎛
⎜⎜⎜⎜⎝

λ 0 0 0

1 λ 0 0

0 0 λ̄ 0

0 0 0 μ

⎞
⎟⎟⎟⎟⎠, Q = (x,y,x,y + l2y), x,y ∈ C4, |l2| = 1. (39)

Here both the case of λ = μ and the case of λ �= μ are possible. Let the Schwarz problem (2)
be homogeneous; i.e., ψ ≡ 0. Here we also have the representation (34), and system (36) acquires
the form

(f1 + g1)|Γ = 0, (f2 + g2 + l2g2)|Γ = 0. (40)

By virtue of the representation (34), f1 and g1 in Eqs. (40) are arbitrary λ- and λ̄-holomorphic
functions, respectively; g2 is an arbitrary μ-holomorphic function, and g2 = h2 and f2 = yf ′

1 + h1

in Eqs. (35), where h1 is an arbitrary λ-holomorphic function.

Let D ⊂ R2 be an arbitrary domain bounded by a Lyapunov contour Γ. Note that the first
equation in system (40) has infinitely many solutions f1, g1 in which the sum f1 + g1 is identically
zero, f1 + g1 ≡ 0. One can take, say,

f1 = (x+ λy)n, g1 = −(x+ λy)n, n = 1, 2, . . .

In view of the substitution g2 = h2, f2 = yf ′
1 + h1, the second equation in system (40) acquires

the form
(h1 + h2 + l2h2)|Γ = −yf ′

1|Γ ∈ Hσ(Γ). (41)

Problem (41) has a (unique) solution for the functions h1, h2 ∈ Hσ(D ) for |l2| = 1 and λ �= μ by
Lemma 2 and for arbitrary l2 ∈ C and λ = μ by Lemma 1. One can also set l2 = 0 and apply
Theorem 2.

Obviously, one can construct infinitely many such solutions of the functional equation (41) in
one and the same domain D depending on the choice of the functions f1, g1 ∈ C1,σ(D ). Each of
these solutions gives a nontrivial solution φ(z) ∈ Hσ(D ) of the homogeneous Schwarz problem by
formula (15). The vector functions φ(z) are linearly independent as well for an appropriate choice
of the functions f1 and g1.

Further, let us prove that none of these solutions has the property Re φ(z) ≡ 0.

Indeed, assume the contrary. Then Re φ|Γ = 0 on each contour Γ. Since the algorithm for the
construction of the functions φ is invertible, we see that Eq. (41) also holds in this case on an
arbitrary contour Γ with the same functions h1, h2, and f ′

1, which is impossible.

As a result, we have in particular proved that Theorem 3 is not true for arbitrary matrices J .
Namely, the following theorem holds.
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Theorem 7. There exist matrices J ∈ C4×4 with eigenvalues lying on different sides of the
real axis and such that the corresponding homogeneous Schwarz problem in any domain D bounded
by a Lyapunov contour has infinitely many linearly independent solutions in the function classes
φ(z) ∈ Hσ(D ).

A method similar to that given in Remark 3 generalizes Theorem 7 and the algorithm for
constructing nonuniqueness examples to dimensions n = 4k, k = 1, 2, . . .
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