
Journal of Mathematical Sciences, Vol. 234, No. 4, October, 2018

MODEL ELLIPTIC BOUNDARY-VALUE PROBLEMS
FOR PSEUDODIFFERENTIAL OPERATORS
IN CANONICAL NONSMOOTH DOMAINS

V. B. Vasilyev UDC 517.95+517.983

Abstract. We consider a simplest elliptic pseudodifferential equation in a multi-dimensional cone
(multi-dimensional angle) and describe all possible structures of its solutions related to the wave factoriza-
tion of the elliptic symbol. Depending on the index of wave factorization, we consider various statements of
well-posed boundary-value problems. The existence of solutions is studied in Sobolev–Slobodetskii spaces.

1. Introduction

This work pertains to the next, “multi-dimensional,” stage in the development of the theory of
boundary-value problems for elliptic pseudodifferential operators on manifolds whose boundary may con-
tain various types of singularities. This program was proposed by the author in the late 1980s to early
1990s and was partially realized in his works of that period: at least a fairly complete understanding of
the two-dimensional situation was reached (a review and the results of these papers can be found [4, 5]).
The principal difference of the author’s approach from previous works lies in a systematic utilization of
the concept of wave factorization of the elliptic symbol. Roughly speaking, we are dealing with a multi-di-
mensional version of the Wiener–Hopf method or a multi-dimensional analogue of the classical Riemann
boundary-value problem [1,2]. A few such analogues had been proposed (V. A. Kakichev, V. S. Vladimirov,
et al.), but none of those are suitable for the construction of a theory of pseudodifferential equations on
manifolds with nonsmooth boundaries. The author’s main idea is that the construction of such a theory
should be based on merely two fundamental principles:

• the local principle (adopted by I. B. Simonenko with regard to multi-dimensional singular integral
equations), otherwise called “the principle of frozen coefficients” (used by J. Schauder for partial
differential equations);

• the factorization principle, the efficiency of which has been convincingly demonstrated in the works
of M. I. Vishik and G. I. Eskin and which has been supplemented by the author’s introduction of
wave factorization at a singular boundary point.

The simplest domain with a nonsmooth boundary is a cone in m-dimensional space. Starting with
the classical work of V. A. Kondratiev, such a cone has been treated as the direct product of the base
and the semi-axis, with further application of the Mellin transformation in one variable and the reduction
of the original boundary-value problem in the cone to the corresponding boundary-value problem with
a parameter, now in a domain with a smooth boundary (the base of the cone). The author has allowed
himself to question whether this approach is reasonable, since the result of this procedure is not a cone
but a cylinder, which is a completely different geometric figure. Further, what considerations should be
used for the statement of one or another problem? This is where the divergence starts. First, the author
is of the opinion that the cone should not be subject to “splitting,” since it represents one of the many
canonical singularities (the initial model singularity for the points of a smooth boundary was the half-space
R

m
+ , and in this case the inversion of the model elliptic pseudodifferential operator can be effectively based

on the theory of the classical Riemann boundary-value problem and the Cauchy integral). Second, in the

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 31, pp. 22–37, 2016.

1072–3374/18/2344–0397 c© 2018 Springer Science+Business Media, LLC 397

DOI 10.1007/s10958-018-4018-3



framework of the Vishik–Eskin theory, everything is explained in such a simple and natural way that one
inevitably lands at trying to generalize all this to the multi-dimensional case.

Many analysts started their investigations directly with Lipschitz domains, more precisely, manifolds
whose boundary can be locally represented as the graph of a Lipschitz continuous function. However, at
the Equadiff-2013 conference in Prague, V. G. Maz’ya managed to persuade the author (in particular, by
drawing a very simple picture) that there are many cones that cannot be described by such graphs, not
to mention exotic situations, when one has to deal with “bunches” of different singularities (see [6]).

Some preliminary and additional results obtained by the author in relation to the present work can
be found in [7–11].

2. Model Operators and Canonical Domains

2.1. Pseudodifferential Operators. These operators are locally defined by the formula

u(x) �→
∫

Rm

∫

Rm

A(·, ξ)u(y)ei(x−y)·ξ dξ dy,

provided that D is a smooth compact manifold, since in this case one can use the principle of frozen
coefficients, which is also called “the local principle.” For manifolds with a smooth boundary, other local
formulas are required to define an operator A: namely, at the interior points of the manifold D, one
utilizes the first formula, but at the boundary points, another one:

u(x) �→
∫

R
m
+

∫

Rm

A(·, ξ)u(y)ei(x−y)·ξ dξ dy,

where R
m
+ = {x ∈ R

m : x = (x1, . . . , xm), xm > 0} is a half-space.
For the inversion of the latter operator with the symbol A(·, ξ) independent of the spatial variable

x, one can use the theory of the classical Riemann boundary-value problem [1, 2] for the upper and the
lower complex half-planes with the parameter ξ′. A systematic realization of this procedure can be found
in the works of M. I. Vishik and G. I. Eskin (see [3]). However, if the boundary ∂D contains a conical
point, this approach is inapplicable.

A conical point on the boundary is a point with a neighborhood diffeomorphic to the cone

Ca
+ = {x ∈ R

m : xm > a|x′|, x′ = (x1, . . . , xm−1), a > 0},
which gives rise to the following local definition of a pseudodifferential operator in a neighborhood of
a conical point:

u(x) �→
∫

Ca
+

∫

Rm

A(·, ξ)u(y)ei(x−y)·ξ dξ dy.

2.2. Sobolev–Slobodetskii Spaces. In the multi-dimensional space R
n+m, we introduce the set Kn ≡

R
n × Ca

+ and consider the equation

(Au)(x) = f(x), x ∈ Kn, (1)

where A is a pseudodifferential operator with the corresponding model symbol satisfying the following
condition: ∃c1, c2 > 0 such that

c1 ≤ |A(ξ)(1 + |ξ|)−α| ≤ c2, ξ ∈ R
n+m.

The real α ∈ R is called the order of the pseudodifferential operator A.
We consider such operators in the Sobolev– Slobodetskii space Hs(Rn+m) with the norm

‖u‖2s =
∫

Rn+m

|ũ(ξ)|2(1 + |ξ|)2s dξ.
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It is well known (and can be easily proved) that A is a bounded linear operator from Hs(Rn+m) to
Hs−α(Rn+m) [3].

3. Wave Factorization and Existence of Solutions

Denote by
∗

Ca
+ the cone conjugate to Ca

+:
∗

Ca
+ = {x ∈ R

m : x = (x′, xm), axm > |x′|},
and let Ca− ≡ −Ca

+. By T (Ca
+) we denote the radial tubular region over the cone Ca

+, i.e., the region of
the form R

m + iCa
+ in the multi-dimensional complex space C

m. The symbol tilde “∼” is used to denote
the Fourier transform of a function, as well as the Fourier image of a space, respectively: ũ+, u+ and
H̃, H. The variable ξ ∈ R

n+m is represented in the form ξ = (ξ′′, ζ), where ξ′′ ∈ R
n, ζ ∈ R

m, ζ = (ξ′, ξm).
To describe the situation with the existence of solutions, we introduce the following notion.

Definition 1. For a symbol A(ξ), its wave factorization with respect to the cone Kn is its representation
of the form

A(ξ) = A �=(ξ)A=(ξ),
where A�=(ξ) and A=(ξ) satisfy the following conditions:

(1) A�=(ξ), A=(ξ) are defined for all ξ ∈ R
n+m, except, possibly, the points {ξ ∈ R

n+m : |ξ′|2 = a2ξ2m};
(2) A �=(ξ), A=(ξ) can be analytically extended to the radial tubular regions T (

∗
Ca
+), T (

∗
Ca−) for almost

all ξ′′ ∈ R
n such that, respectively,

|A±1
�= (ξ′′, ζ + iτ)| ≤ c1(1 + |ξ| + |τ |)±κ, |A±1

= (ξ′′, ζ − iτ)| ≤ c2(1 + |ξ| + |τ |)±(α−κ), ∀τ ∈
∗

Ca
+ .

The exponent κ ∈ R is called the wave factorization index.

The class of such symbols is sufficiently wide: relevant examples can be found, for instance, in [4, 7].
Note that wide classes of analytic functions in tubular regions over cones have been examined in detail

by V. S. Vladimirov [17,18].
We introduce the space Hs(Kn) that consists of generalized functions in Hs(Rn+m) with support

in K̄n. The right-hand side of the equation is chosen from the space of generalized functions in Hs−α
0 (Kn)

that can be extended to Hs−α(Rn+m). The norm in Hs
0(Kn) is defined as

‖f‖+s−α = inf ‖lf ‖s−α,

where the infimum is taken over all possible extensions lf .
In what follows, it is always assumed that the symbol A(ξ) allows for a wave factorization with respect

to Kn and its wave factorization index is κ.

3.1. The Case of a Unique Solution. Let κ − s = δ, |δ| < 1/2. We introduce an integral operator
Gn,m by

(Gn,mu)(ξ) =
aΓ(m/2)
2π(m+2)/2

lim
τ→0+

∫

Rm

u(ξ′′, η′, ηm) dη′ dηm

(|ξ′ − η′|2 − a2(ξm − ηm + iτ)2)m/2
,

where Γ is the Euler gamma-function.
The structure of the operator Gn,m is very simple. It is the Fourier transform of the multiplicator

generated by the characteristic function of the cone Kn. Since this function is nonintegrable, one has
to introduce an “additional coefficient” of the type eiτ , which, in the Fourier transforms, results in the
convolution with the Bochner kernel [17, 18] and the exit to a multi-dimensional complex space.

Such operators are constructed in explicit form in [14, 15] for n = 0, as well as m = 2. In our case,
the situation is much more difficult.

Lemma 1. For |δ| < 1/2, the operator Gn,m is a bounded linear operator H̃δ(Rn+m) → H̃δ(Rn+m).
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For the most part, the proof follows the arguments used in [3, 4, 14] and is omitted.

Theorem 1. Let κ − s = δ, |δ| < 1/2. Then, equation (1) has a unique solution in Hs(Kn) for any
right-hand side f ∈ Hs−α

0 (Kn). This solution has the form (in terms of Fourier transforms)

ũ+(ξ) = A−1
�= (ξ)Gn,mA−1

= l̃f .

Proof. Let us extend f to the whole of R
n+m and denote the extension by lf . Setting

u−(x) = (Au+)(x) − lf (x),

we rewrite equation (1) as
(Au+)(x) + u−(x) = lf (x).

Now passing to Fourier transforms and using the wave factorization, we can write the original equation
as follows:

A�=(ξ)ũ+(ξ) + A−1
= (ξ)ũ−(ξ) = A−1

= (ξ)l̃f (ξ). (2)

Note that A−1
= (ξ)l̃f (ξ) belongs to H̃s−κ(Rn+m) and |s − κ| < 1/2 by assumption. In such spaces,

the operator A−1
= is bounded, and therefore, according to the theory of the multi-dimensional Riemann

problem [14], the right-hand side A−1
= (ξ)l̃f (ξ) can be uniquely represented as the sum

A−1
= (ξ)l̃f (ξ) = f+(ξ) + f−(ξ),

f+(ξ) = Gn,mA−1
= (ξ)l̃f (ξ), f−(ξ) = (I − Gn,m)A−1

= (ξ)l̃f (ξ).

Let us rewrite (2) in the form

A�=(ξ)ũ+(ξ) − f+(ξ) = f−(ξ) − A−1
= (ξ)ũ−(ξ),

where f+ ∈ H̃−δ(Kn), f− ∈ H̃−δ(Rn+m \ Kn). The right- and left-hand sides of the last relation belong
to H̃−δ(Kn) and H̃−δ(Rn+m \ Kn), respectively, and are therefore annihilated, since |δ| < 1/2. Thus,

ũ+(ξ) = A−1
�= (ξ)Gn,mA−1

= l̃f ,

which completes the proof.

3.2. Structure of the General Solution. Here, we consider equation (1) for κ − s = k + δ, k ∈ N,
|δ| < 1/2. Proceeding as above up to formula (2), taking into account that A−1

= (ξ)l̃f (ξ) belongs to
H̃s−κ(Rn+m), and choosing a polynomial Q(ξ) such that

|Q(ξ)| ∼ (1 + |ξ|)k,

we find that the function Q−1(ξ)A−1
= (ξ)l̃f (ξ) belongs to H̃−δ(Rn+m).

Theorem 2. In terms of Fourier transforms, the general solution of equation (1) has the form

ũ+(ξ) = A−1
�= (ξ)Q(ξ)Gn,mQ−1(ξ)A−1

= (ξ)l̃f (ξ) + A−1
�= (ξ)V−aF

( k∑
j=1

cj(x′′, x′) ⊗ δ(k−1)(xm)
)

, (3)

where cj(x′′, x′) ∈ Hsj (Rn+m−1) are arbitrary functions, sj = s − κ + j − 1/2, j = 1, 2, . . . , k; lf is an
arbitrary extension of f to Hs−α(Rn+m).

Proof. According to the theory of the multi-dimensional Riemann problem [4,14], the function Q−1A−1
= l̃f

can be represented as a sum of two terms (the so-called jump problem):

Q−1A−1
= l̃f = f+ + f−,

where f+ ∈ H̃(Kn), f− ∈ H̃(Rm \ Kn). Thus, we have

Q−1A�=ũ+ + Q−1A−1
= ũ− = f+ + f−,
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or
Q−1A�=ũ+ − f+ = f− − Q−1A−1

= ũ−.

In other words,
A�=ũ+ − Qf+ = Qf− − A−1

= ũ−.

The left-hand side of this relation belongs to H̃−k−δ(Kn) and the right-hand side belongs to
H̃−k−δ(Rn+m \ Kn). Therefore,

F−1(A�=ũ+ − Qf+) = F−1(Qf− − A−1
= ũ−),

where the left-hand side belongs to H−k−δ(Kn) and the right-hand side to H−k−δ(Rn+m \ Kn), which
immediately implies that this is a generalized function with support in ∂Kn.

Denoting by Ta the bijection R
n+m → R

n+m that transforms ∂Kn into the hyperplane xm = 0 (more
precisely, the transformation (x′′, x′, xm) → (x′′, x′, xm − a|x′|)), we see that the function

TaF
−1(A�=ũ+ − Qf+)

is supported on the hyperplane tm = 0 and belongs to H−k−δ(Rn+m). A generalized function of this type
is a linear combination of the Dirac delta-function and its derivatives [18] and, in our case, has the form

k−1∑
j=0

cj(t′′, t′) ⊗ δ(j)(tm).

Simple calculations show that

(FTau)(ξ) =
∫

Rm

e−ix·ζ ŭ(ξ′′, x1, . . . , xm−1, xm − a|x′|) dx

=
∫

Rm

e−iy′ξ′e−i(ym+a|y′|)ξm ŭ(ξ′′, y1, . . . , ym−1, ym) dy,

where ŭ is the partial Fourier transform of u in the first n variables, the Jacobian of this transformation
being equal to 1 [7–9]. Then

(FTau)(ξ) =
∫

Rm−1

e−ia|y′|ξme−iy′·ξ′ û(ξ′′, y1, . . . , ym−1, ξm) dy′,

where û is the Fourier transform of u in the first n and the last variables.
Since a pseudodifferential operator in R

n+m is defined by

(Au)(x) =
∫

Rn+m

eix·ξA(ξ)ũ(ξ) dξ

and the direct Fourier transform by

ũ(ξ) =
∫

Rm

e−ix·ξu(x) dx,

it follows that we have obtained the relation

(FTau)(ξ) =
∫

Rm−1

e−ia|y′|ξme−iy′·ξ′ û(ξ′′, y1, . . . , ym−1, ξm) dy. (4)

Denoting by Ea(ξ′, ξm) the (m−1)-dimensional Fourier transform (y′ → ξ′ in the sense of distributions)
of e−ia|y′|ξm , we can rewrite(4) as

(FTau)(ξ) = (Ea ∗ ũ)(ξ), (5)
where ∗ indicates convolution in the first m − 1 variables and the operator of multiplication in the last
variable ξm.
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Let (see also [7])
Va = FTaF

−1.

Then, (5) can be rewritten as
FTa = VaF. (6)

Therefore, Va is a combination of convolution and the multiplicator with the kernel Ea(ξ′, ξm). This is
a fairly simple operator, which is bounded in the Sobolev–Slobodetskii spaces Hs(Rn+m).

In order to obtain the statement of Theorem 2, it remains to perform some simple calculations with
the operators Va, F and the distribution

k−1∑
j=0

cj(t′′, t′) ⊗ δ(j)(tm).

4. Boundary-Value Problems with Local Boundary Conditions

The expression (3) contains k arbitrary functions. In order to obtain a unique solution, one needs
additional conditions for the determination of these functions. As a rule, such conditions are formulated
in terms of traces of some (pseudo)differential operators applied to the solution (3), but other types of
additional conditions are also possible (see Sec. 5). One of the simplest cases of additional conditions is
considered in [7–9]: for k = 1, the classical Dirichlet or Neumann conditions. Here, we also limit ourselves
with the Dirichlet condition, for the mere reason that the resulting constructions are too cumbersome.

Thus, let k = 1 in (3). The expression becomes even simpler, if we take f ≡ 0:

ũ+(ξ) = A−1
�= (ξ) · V−a · F

(
c(x′′, x′) ⊗ δ(xm)

)
, (7)

where we have changed the notation: c1(x′′, x′) ≡ c(x′′, x′) ∈ Hs−κ+1/2(Rn+m−1).
Taking into account (6), we transform (7) as follows:

u+(x) = (F−1 · A−1
�= (ξ) · F ) · (F−1 · V−a · F )

(
c(x′′, x′) ⊗ δ(xm)

)
.

Hence, using (6), we get
u+(x) = (A−1

�= · T−a)
(
c(x′′, x′) ⊗ δ(xm)

)
. (8)

Remark 1. Here and above, A−1
�= denotes the pseudodifferential operator with the symbol A−1

�= (ξ), while
A−1

�= (ξ) stands for the function itself, as well as the operator of multiplication by this function; moreover,
we will write A−1

�= ṽ instead of A−1
�= (ξ)ṽ(ξ).

Applying the operator Ta to both sides of (8), we get

(Tau+)(x) = (Ta · A−1
�= · T−a)

(
c(x′′, x′) ⊗ δ(xm)

)
.

Suppose that the Dirichlet condition is prescribed on the boundary ∂Kn, i.e., the values of u+ on
∂Kn are known. Therefore, the values of (Tau+)(x) on the hyperplane (x′′, x′, 0) are known. Denote this
known function by v(x′′, x′):

(Tau+)(x)|xm=0 = v(x′′, x′). (∗)
Thereby, we come to the equation

(Ta · A−1
�= · T−a)

(
c(x′′, x′) ⊗ δ(xm)

)∣∣
xm=0

= v(x′′, x′)

with the unknown function c(x′′, x′). Applying the Fourier transformation to the last equation, we write
it in the form

+∞∫

−∞
(F · Ta · A−1

�= · T−a)
(
c(x′, x′) ⊗ δ(xm)

)
dξm = ṽ(ξ′′, ξ′),
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or
+∞∫

−∞
(F · Ta · F−1 · F · A−1

�= · F−1 · F · T−a · F−1 · F )
(
c(x′′, x′) ⊗ δ(xm)

)
dξm = ṽ(ξ′′, ξ′),

and after simplifications,
+∞∫

−∞

(
(Va · A−1

�= (ξ) · V−a)c̃
)
(ξ′′, ξ′, ξm) dξm = ṽ(ξ′′, ξ′). (9)

Equation (9) is an equivalent integral equation for the determination of the unknown function
c(x′′, x′) ∈ Hs−κ+1/2(Rn+m−1). Thus, the Dirichlet problem has a unique solution, if and only if equa-
tion (9) has a unique solution c(x′′, x′) ∈ Hs−κ+1/2(Rn+m−1).

Theorem 3. For κ−s = 1+δ, |δ| < 1/2, f ≡ 0, equation (1) has a unique solution in Hs(Kn) satisfying
the boundary condition (∗) with v ∈ Hs−κ+1/2(Rn+m−1), if and only if the integral equation (9) has
a unique solution in Hs−κ+1/2(Rn+m−1).

5. Boundary-Value Problems with Integral Boundary Conditions

Here we consider another type of additional conditions that would allow us to uniquely determine the
function c(x′′, x′) ∈ Hs−κ+1/2(Rn+m−1), while staying in the framework of the special case of Sec. 4 and
the expression of the general solution (7).

It is convenient to write (7) in the form

ũ+(ξ) =
(
(A−1

�= (ξ) · V−a)c̃
)
(ξ). (7′)

In order to determine the unknown function c(x′′, x′), we suggest prescribing the integral of u+ over
the boundary ∂Kn (two-dimensional statements of the problem have been considered earlier in [13]).
Thus, suppose that ∫

∂Kn

u+(y) dSy

is given. This is an integral of a function of n + m variables over an (n + m − 1)-dimensional surface.
The result should be a function of a single variable. Let us represent this function of a single variable in
another form with the help of the operator Ta:∫

Rn+m−1

(Tau+)(x) dx′′ dx′ = v(xm), x = (x′′, x′, xm). (10)

From (7′), we get

(Tau+)(x) = Ta

(
(F−1 · A−1

�= (ξ) · V−a)c̃
)
(x), x ∈ R

n+m.

In what follows, we need the following simple property of the Fourier transformation. Denote by P ′
the operator of restriction to the straight line xm in the (n + m)-dimensional space R

n+m. It is easy to
check that

(P ′Fu)(ξm) ≡ ũ(0, 0, ξm) =
∫

Rn+m−1

û(x′′, x′, ξm) dx′′ dx′.

Therefore,
(FTau+)(0, 0, ξm) = ṽ(ξm),

and the last function is known. We can write(
(F · Ta · F−1 · A−1

�= (ξ) · V−a)c̃
)
(ξ) =

(
(Va · A−1

�= (ξ) · V−a)c̃
)
(ξ),
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and, after the restriction to the line, we get(
(Va · A−1

�= (ξ) · V−a)c̃
)
(0, 0, ξm) = ṽ(ξm). (11)

Relation (11) is an equivalent integral equation for the determination of c(x′′, x′). Let us formulate
the result obtained above.

Theorem 4. For κ−s = 1+δ, |δ| < 1/2, f ≡ 0, equation (1) has a unique solution in Hs(Kn) satisfying
the boundary condition (10) with a given right-hand side, if and only if equation (11) has a unique solution
in Hs−κ+1/2(Rn+m−1).

Remark 2. Generally speaking, in order to ensure the unique solvability, one has to impose additional
conditions on the integral equation (see [13]).

6. Overdetermined Problems and Potentials

In the remaining case, κ − s = k + δ, k ∈ Z, k < 0, |δ| < 1/2, we proceed as follows (see [3–5,12,15]).
If the right-hand side of equation (1) belongs to Hs−α

0 (Kn), then f ∈ Hκ−δ−α
0 (Kn), since s − α =

κ − n − δ − α κ − δ − α. By Theorem 1, there is a unique solution w+ ∈ Hκ−δ(Kn) of (1) such that

w̃+(ξ) = A−1
�= (ξ)Gn,mA−1

= (ξ)l̃f (ξ). (12)

The problem here is that (12) yields a solution of a wider class and there is still a certain arbitrariness
in the choice of the solution from the desired class Hs(Kn).

As in Secs. 4 and 5 above, we “reduce” equation (12) to the case of a half-space and use the results
obtained in that case [3]. From [3], we borrow some facts connected with the theory of one-dimensional
singular integral equations and the classical Riemann problem [1,2].

We introduce the following operators initially defined on the Schwartz space S(Rn+m) consisting of
infinitely differentiable functions rapidly decaying at infinity:

(Π±ũ)(ξ′′, ξ′, ξm) = ± i

2π
lim

τ→0+

+∞∫

−∞

ũ(ξ′′, ξ′, ηm) dηm

ξm ± iτ − ηm
, (Π′ũ)(ξ′′, ξ′) =

+∞∫

−∞
ũ(ξ′′, ξ′, ξm) dξm,

and let Λ± be the pseudodifferential operator with the symbol Λ±(ξ′, ξm) = ξm ± i|ξ′| ± i. Then, for any
ũ ∈ H̃k+δ(Rn+m), k ∈ N, |δ| < 1/2, we have (see [3])

(Π+ũ)(ξ′′, ξ′, ξm) =
k∑

j=1

i(Π′Λj−1
+ ũ)(ξ′′, ξ′)

Λj
+(ξ′, ξm)

+
1

Λk
+(ξ′, ξm)

(Π+Λk
+ũ)(ξ′′, ξ′, ξm). (∗)

Now, we rewrite (12) in the form

F−1
ξ→x

(
A�=(ξ)w̃+(ξ)

)
= F−1

ξ→x

(
Gn,mA−1

= (ξ)l̃f (ξ)
)
, (13)

which implies that
(A�= ∗ w+)(x) = χRn×Ca

+
(x) · (A−1

= ∗ (lf )
)
(x),

where χRn×Ca
+

is the characteristic function of the set R
n × Ca

+.
Let us apply the operator Ta to both sides of the last relation and pass to the Fourier transforms.

Note that
Ta

(
χRn×Ca

+
(x) · (A−1

= ∗ (lf )
)
(x)

)
= χRn×R

m
+

(x) · Ta

(
A−1

= ∗ (lf )
)
.

Therefore,
(FTa)(A�= ∗ w+)(ξ) = Π+Va

(
A−1

= (ξ)l̃f (ξ)
)
,

and we further have
w̃+(ξ) = A−1

�= (ξ)V−aΠ+Va

(
A−1

= (ξ)l̃f (ξ)
)
.
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Using (∗) in the last relation, we obtain the desired representation

w̃+(ξ) =
k∑

j=1

[(A−1
�= · V−a · Λ−j

+ · Va)ṽj ](ξ′′, ξ′, ξm) + ũ+(ξ),

where [3]

ṽj(ξ′′, ξ′) = i(Π′Λj−1
+ · A−1

= · l̃f )(ξ′′, ξ′), ũ+(ξ) = A−1
�= (ξ)V−aΛ−k

+ (Π+VaΛk
+A−1

= · l̃f )(ξ′′, ξ′, ξm).

Let us single out the terms
V−aΛ

−j
+ Vaṽj ≡ ũj

and rewrite our representation in the form

w̃+(ξ) =
k∑

j=1

(A−1
�= · ũj)(ξ′′, ξ′, ξm) + ũ+(ξ). (14)

The terms in (14) play the role of potentials.

Theorem 5. For κ − s = k + δ, k ∈ Z, k < 0, |δ| < 1/2, equation (1) has a solution in Hs(Kn), if and
only if the right-hand side f satisfies the additional conditions

ũj = 0, j = 1, . . . , |k|.

7. Conclusion

Obviously, we have not considered here all possible combinations of singularities that can be examined
by our methods. In particular, one of the most interesting problems, in our opinion, is to investigate
singularities described by the product of two cones: one cone Ca

+ ⊂ R
n with respect to one part of the

variables and another, Cb
+ ⊂ R

m, with respect to the other part. The existence of solutions of equation (1)
and the corresponding boundary-value problems can be examined in the space Hs(Ca

+×Cb
+) ⊂ Hs(Rn+m).

The author hopes to deal with these situations in further publications.
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