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Abstract—In the Stokes approximation at small Reynolds and Peclet numbers, we obtain a solution
to the boundary-value problem of flow around of particles of spherical shape for stationary system
of equations of a viscous non-isothermal fluid comprising a linearized by speed Navier–Stokes
equation system and the equation of heat transfer given an exponential-power law of dependence
of viscosity of fluid on temperature.
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Introduction. Many phenomena observed in the atmosphere and the ocean, the problems of
hydrodynamics, hydraulics, acoustics, circulatory physiology, organization of technological processes
etc. are related to the motion and flow of viscous fluid around bodies, i.e., they can be studied within
the framework of incompressible fluid models. In analysis of such models we use the term “relative
temperature difference”. By relative temperature difference we mean the ratio of the difference between
the average surface temperature of the particle TS and the temperature of the region far from it T∞
to the latter. The relative temperature drop is considered small if the inequality (TS − T∞) /T∞ � 1
holds. When this inequality is met, the fluid transfer coefficients (viscosity, thermal conductivity, etc.)
can be considered constant, and the fluid itself is called isothermal. In this case, a number of authors
investigated the stationary system of hydrodynamics equations [1, 2].

If (TS − T∞) /T∞ ∼ O (1), then the relative temperature drop is significant. In this case, the particle
is considered heated and when solving the equations of hydrodynamics and heat and mass transfer it is
necessary to take into account the dependence of the molecular transfer coefficients on temperature. It
complicates the analysis of the system of hydrodynamics equations, and the fluid itself is called non-
isothermal. In the literature, this issue has not been adequately studied (e.g., [3–6]). The heating
of a particle surface can occur due to the internal heat sources inhomogeneously distributed in its
volume with the density qi(r, θ), where r and θ are the spherical coordinates (0 ≤ θ ≤ π). The effect
of these sources can be due, for example, to the occurrence of a volumetric chemical reaction, the
process of radioactive decay of a particle’s substance, the absorption of electromagnetic radiation or the
like. The resulting increase in the temperature of the surface of the particle affects the thermophysical
characteristics of the fluid and, therefore, can significantly affect the distribution of the velocity and
pressure fields in its vicinity. As shown by the non-isothermal liquid investigations, under a certain type
of seek of a solution for the mass-velocity components and permissible simplifications from the viewpoint
of physics, the solution of the linearized velocity system of the Navier–Stokes equations can be reduced
to the solution of an ordinary inhomogeneous third-order differential equation with an isolated singular
point that can be found applying functional series of a special kind.
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1. Statement of the problem. Basic equations and boundary conditions. We consider the
classical problem of the axisymmetric flow past a heated hydrosol solid spherical shape particle of
radius R (inside which act unevenly distributed heat sources of power qi) with a viscous incompressible
non-isothermal fluid of velocity U∞‖Oz.

The general system of hydrodynamics equations is nonlinear (due to dependence of the liquid viscosity
on the temperature) and, when solving it, we make the following physical assumptions realized in most
applications.

Assumption 1. Particle flow occurs at significant relative temperature differences. Among all the
parameters of fluid transport, only the viscosity coefficient most strongly depends on temperature ([7],
Chap. 8, P. 279). It is known [7] that the viscosity coefficient of a fluid decreases with temperature by
an exponential law. Papers [3, 4] extensively applied the Reynolds formula ([7], Chap. 8, P. 299) with an
error up to 40%.

In this paper we apply formula (1). Analysis of the semi-empirical formulas and experimental data
available in the literature show that in order to take into account the dependence of the viscosity
coefficient on temperature, the formula

μe = μ∞

[
1 +

N∑
n=1

Fn

(
Te

T∞
− 1

)n]
exp

{
− A

(
Te

T∞
− 1

)}
, (1)

where μ∞ = μe(T∞), A and Fn represent the known set of constants (its own for any specific fluid),
allows to describe the fluid viscosity change in a wide range of temperatures with any necessary accuracy.
For example, for water with a relative error not exceeding 2.5% in the temperature range from 273circK
to 363◦K, and for T∞ = 273◦K the coefficients A = 5.779, F1 = −2.318, F2 = 9.118, F3 = 0.00003,
F4 = 0.000002, and so on. Thus, if we restrict ourselves to a relative error not exceeding 2.5%, which
is often suffices for experimental calculations, then for water we can restrict ourselves to only the first
two terms in the sum of (1): F1 = −2.318 and F2 = 9.118 ([5, 6]). Direct calculations have shown that
similar situation holds for other Newtonian fluids. Here and in what follows the indices “e” and “i” refer
to the viscous fluid and the heated particle, respectively, the index “∞” describes the fluid parameters at
infinity in the unperturbed flow, and index “s” shows values of physical quantities taken at an average
surface temperature.

Assumption 2. The thermal conductivity coefficient of a particle is much larger than that of a fluid,
which is the case for most real fluids. This assumption allows us to ignore the viscosity coefficient
dependence on the angle θ in the system “the particle–the fluid medium” (we assume weak angular
temperature distribution asymmetry) and, consequently, the viscosity is related only to the temperature
te0 (r), i.e., μe (te (r, θ)) ≈ μe (te0 (r)). Then the values te (r, θ) = te0 (r) + δte (r, θ), here δte (r, θ) �
te0 (r); δte (r, θ) , te0 (r) are determined from the thermal problem solution. Under this assumption we
can consider the hydrodynamic part separately from the thermal part, and the connection between them
is carried out only by the boundary conditions.

Assumption 3. We consider a power-law form of a solid particle thermal conductivity dependence on
the temperature: λi = λi0

(
Ti/T∞

)η, −1 ≤ η ≤ 1 ([8], Chap. 15, P. 339).

Assumption 4. The particle is formed by a homogeneous and isotropic in its properties substance.

Under the given assumptions we describe the flow in a spherical coordinate system related to the
particle’s center of mass. Here we give an axisymmetric solution to the boundary-value problem for
a stationary velocity linearized equation system describing a vector field of the mass velocity Ue(x) =
(U1(x), U2(x), U3(x)), the pressure Pe(x) and the temperature Te(x) (Eqs. (2), (3) ([8], Chap. 2, P. 42))
in the external domain x ∈ Ωe = R

3 \ Ωi, here Ωi is an inner spherical region centered at zero, and also
a temperature field inside the particle Ti(x), x ∈ Ωi (Eq. (4)):

∇Pe = μe∇2Ue + 2(∇μe) · ∇Ue + (∇μe) × (∇× Ue), divUe = 0, (2)

ΔTe = 0, (3)
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div (λi∇Ti) = −qi, (4)

here ∇ = (∇1,∇2,∇3) is a vector differential Hamilton operator in Cartesian coordinates, ∇j ≡ ∂/∂xj ,
qi is a function defined in Ωi, which describes the thermal sources density within a particle.

System (2)–(4) is solved with the following boundary conditions in the spherical coordinate system
(y = r/R,ϕ, θ), by taking into account adhesion condition (5) on the particle surface (y = 1) for normal
(Ur (y, θ)) and tangent (Uθ (y, θ)) components of the mass velocity Ue, the equality of temperatures and
the continuity of the radial heat fluxes given by (6), and standard conditions (7) for y → ∞ (far from the
particle) ([8], Chap. 4.18, P. 145) and (8) for y → 0 (inside the particle) (U∞= |U∞|):

lim
y→1

Ur (y, θ) = 0, lim
y→1

Uθ (y, θ) = 0, (5)

lim
y→1

Te (y, θ) = lim
y→1

Ti (y, θ) , lim
y→1

(
λe

∂Te (y, θ)
∂y

)
= lim

y→1

(
λi

∂Ti (y, θ)
∂y

)
, (6)

lim
y→∞

Ur (y, θ) = U∞ cos θ, lim
y→∞

Uθ (y, θ) = −U∞ sin θ, lim
y→∞

Pe = P∞, lim
y→∞

Te = T∞, (7)

lim
y→0

|Ti| < ∞. (8)

The boundary conditions for the mass-velocity components far from the particle (7) form tells us that
the solution for the mass-velocity component Ur(y, θ), Uθ(y, θ) and the pressure Pe(y, θ) can be found
in the form of Legendre and Gegenbauer polynomial expansions. We need them in order to find the total
force acting on the particle ([9], Chap. II, P. 69) by integrating the stress tensor over the particle surface

lim
r→R

Fz(r) = lim
r→R

∫
S

(−Pe(r/R, θ) cos θ + σrr cos θ − σrθ sin θ) r2 sin θ dθ dϕ. (9)

It can be shown that this force is determined only by the first terms of the expansions ([8], Chap. 4,
P. 156). Therefore, we assume that

Ur (y, θ) = U∞G (y) cos θ, Uθ (y, θ) = −U∞g (y) sin θ, (10)

here G (y) and g (y) are the unknown functions depending on the radial coordinate.

2. Solution to the heat transfer equations and the Navier–Stokes equation linearized in
velocity. In a spherical coordinate system the system of equations for a viscous incompressible
nonisothermal fluid describing the the velocity and the pressure distribution outside the particle has
the following form ([9], Chap. II, P. 70):

∂Pe

∂y
=

∂σrr

∂y
+

2
y
σrr +

1
y

∂σrθ

∂θ
+

cot θ

y
σrθ −

σθθ − σϕϕ

y
, (11)

∂Pe

∂θ
= y

∂σrθ

∂y
+ 3σrθ +

∂σθθ

∂θ
+ cot θ (σθθ − σϕϕ) , (12)

1
y2

∂

∂y

(
y2Ur) +

1
y sin θ

∂

∂θ

(
sin θ Uθ

)
= 0, (13)

here σrr, σrθ, σθθ and σϕϕ are the components of the stress tensor in a spherical coordinate system,
defined by the equalities ([9], Chap. II, P. 70)

σrr = 2μ
∂Ur

∂y
, σθθ = μ

(
2
y

∂Uθ

∂θ
+

2
y
Ur

)
,

σϕϕ = μ

(
2
y
Ur +

2
y

cot θ Uθ

)
, σrθ = μ

(
∂Uθ

∂y
+

1
y

∂Ur

∂θ
− Uθ

y

)
.

RUSSIAN MATHEMATICS Vol. 62 No. 4 2018



INVESTIGATION OF BOUNDARY-VALUE PROBLEM FOR STATIONARY SYSTEM 55

Let us find the temperature fields outside and inside the particle. Separation of variables allows us to
solve Eqs. (3), (4) and obtain the following solutions satisfying boundary conditions (6)–(8):

te0(y) = 1 + γ/y, (14)

ti0(y) =
(

B +
1 + η

4πRλi0T∞y

∫
V

qidV +
∫ y

1

ψ0

y
dy − 1

y

∫ y

1
ψ0dy

) 1
1+η

,

here ψ0 = −R2(1+η)
2λi0T∞

y2
+1∫
−1

qid(cos θ), γ = tS − 1 is a dimensionless parameter characterizing the heating

of the particle surface, tS = TS/T∞, TS is the average surface temperature of the particle defined by
equality (15), and the integration is performed over the entire volume of the particle:

TS

T∞
= 1 +

1
4πRλeT∞

∫
V

qidV. (15)

From (15) we see that the density of thermal sources qi has a significant influence on the value of the
average surface temperature of a particle.

By formula (14) and Assumption 2 expression (1) turns into

μe = μ∞

(
1 +

N∑
n=1

Fn
γn

yn

)
exp

(
−Aγ

y

)
. (16)

We find the connection between the functions G (y) and g (y) from continuity equation (13) taking
into account expressions (10):

g (y) = G (y) +
y

2
dG (y)

dy
. (17)

Substituting expressions (16), (17) into (12) and acting as in [10] we eventually obtain the following
nonhomogeneous third-order differential equation for the function G (y) on the interval y ∈ [1,∞) (for
the sake of simplicity we assume that N = ∞ due to the explanations of formula (1)):

y4
∞∑

n=0

α(1)
n

γn

yn

d3G(y)
dy3

+ y3
∞∑

n=0

α(2)
n

γn

yn

d2G(y)
dy2

+ y2
∞∑

n=0

α(3)
n

γn

yn

dG(y)
dy

= D

∞∑
n=0

α(4)
n

γn

yn
, (18)

here for n ≥ 1 α
(1)
n = Fn, α

(2)
n = (4 − n)Fn + AFn−1, α

(3)
n = −2(n + 2)Fn + 2AFn−1, α

(4)
n = An/n!,

D is a constant to be determined from boundary conditions (19), α
(1)
0 = α

(4)
0 = F0 = 1, α

(2)
0 = 4,

α
(3)
0 = −4.

Then boundary conditions (5), (7) turn into

lim
y→1

G(y) = 0, lim
y→1

(
G(y) +

y

2
dG

dy

)
= 0, lim

y→∞
G(y) = 1. (19)

Note that one of the homogeneous equation corresponding to non-homogeneous equation (18)
solutions is the function G(y) = const.

Let us find the solution to Eq. (18) in the interval [1,∞) and prove the uniqueness of solution to
boundary-value problem (18)–(19). To do this, we consider the new variable ξ = 1/y in Eq. (18),
introduce a new function Φ = dG/dy and finally find the following equation:

ξ2
∞∑

n=0

α(1)
n γnξn d2Φ(ξ)

dξ2
+ ξ

∞∑
n=0

(
2α(1)

n − α(2)
n

)
γnξn dΦ(ξ)

dξ

+
∞∑

n=0

γnξnα(3)
n

dΦ(ξ)
dξ

= ξ2D

∞∑
n=0

α(4)
n γnξnΦ(ξ). (20)
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The point ξ = 0 is a regular singular point for a homogeneous equation corresponding to the non-
homogeneous equation (20) [11, 12], therefore the solution to the homogeneous differential equation can
be sought with the help of generalized power series.

Φ(ξ) = ξρ
∞∑

n=0

Δnξn (Δ0 
= 0). (21)

Calculating the derivatives we obtain

Φ′(y) =
∞∑

n=0

(n + ρ)Δnyn+ρ−1, Φ′′(y) =
∞∑

n=0

(n + ρ)(n + ρ − 1)Δnyn+ρ−2. (22)

Put (21), (22) into a homogeneous equation corresponding to inhomogeneous equation (20), and
equate the coefficients of ξn+ρ in order to obtain the defining equation

ρ2 − 3ρ − 4 = 0, (23)

the roots of which are ρ1 = 4, ρ2 = −1. Note that the root difference is integer, therefore, according
to the general theory of differential equation solutions in the form of generalized power series by the
Frobenius method, all other solutions, in addition to the first one corresponding to ρ1 = 4, contain an
additional summand with the factor ln y multiplied by the first solution [11, 12].

Thus, by taking into account the root values of the defining equation we obtain a system of linearly
independent solutions for the homogeneous equation corresponding to non-homogeneous equation (20)
in the form

Φ1(ξ) = ξ4
∞∑

n=0

Δ(1)
n ξn, Φ3(ξ) =

1
ξ

∞∑
n=0

Δ(3)
n ξn + β ln ξ Φ1(ξ). (24)

A partial solution to inhomogeneous equation (20) is the function

Φ2(ξ) = DΦ4(ξ), Φ4(ξ) = ξ2
∞∑

n=0

Δ(2)
n ξn + α ln ξ Φ1(ξ). (25)

Put (24), (25) into Eq. (20) and obtain the recurrent formulas for the coefficients

Δ(1)
n = − 1

n(n + 5)

n∑
k=1

{
(n + 4 − k)

[
α

(1)
k (n + 5 − k) − α

(2)
k

]
+ α

(3)
k

}
γkΔ(1)

n−k (n ≥ 1),

Δ(2)
n = − 1

(n + 3)(n − 2)

{
−6α(4)

k γn +
n∑

k=1

[
(n − k + 2)[α(1)

k (n − k + 3) − α
(2)
k ] + α

(3)
k

]
γkΔ(2)

n−k

+ α
n∑

k=0

[
α

(1)
k (2n − 2k + 5) − α

(2)
k

]
γkΔ(1)

n−k−2

}
(n ≥ 3),

Δ(3)
n = − 1

n(n − 5)

{ n∑
k=1

[
(n − k − 1)[α(1)

k (n − k) − α
(2)
k ] + α

(3)
k

]
γkΔ(3)

n−k

+ β

n−5∑
k=0

[
α

(1)
k (2n − 2k − 1) − α

(2)
k

]
γkΔ(1)

n−k−5

}
(n ≥ 6).

When calculating the coefficients Δ(i)
n , i = 1, 2, 3, by the above formulas it is necessary to note

that Δ(1)
0 = −3, Δ(2)

0 = −1, Δ(2)
2 = 1, Δ(2)

1 = −γ[6α(4)
1 + 2(3α(1)

1 −α
(2)
1 ) + α

(3)
1 ]/4, α = γ

15{−6α(4)
2 γ +

[3(4α(1)
1 −α

(2)
1 ) + α

(3)
1 ]Δ(2)

1 − [2(3α(1)
2 −α

(2)
2 ) + α

(3)
2 ]γ}, Δ(3)

0 = γ(α(3)
1 + α

(2)
1 )/4, Δ(3)

1 =
[
α

(3)
1 γΔ(3)

1 +
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(α(3)
2 + α

(2)
2 )γ2

]
/6, Δ(3)

3 =
[
(2α(1)

1 − α
(2)
1 + α

(3)
1 )γΔ(3)

2 + α
(3)
2 γ2Δ(3)

1 + (α(3)
3 + α

(2)
3 )γ3

]
/6, Δ(3)

4 =[
(6α(1)

1 − 2α(2)
1 + 2α(3)

1 )γΔ(3)
3 + (2α(1)

2 −α
(2)
2 + α

(3)
2 )γ2Δ(3)

2 + α
(4)
3 γ3Δ(3)

1 + (α(3)
4 + α

(2)
4 )γ4

]
/4, Δ(3)

5 =

1, β = −
[
(12α(1)

1 − 3α(2)
1 + 3α(3)

1 )γΔ(3)
4 + (6α(1)

2 − 2α(2)
2 + 2α(3)

2 )γ2Δ(3)
3 + (2α(1)

3 −α
(2)
3 + α

(3)
3 )γ3Δ(3)

2 +

α
(3)
4 γ4Δ(3)

1 + (α(3)
5 + α

(2)
5 )γ5

]
/4.

Thus, the general solution to Eq. (20) has the form

Φ(ξ) = C1Φ1(ξ) + Φ2(ξ) + C2Φ3(ξ).

The function Φ(ξ) = C1Φ1(ξ) + Φ2(ξ) + C2Φ3(ξ) meets Eq. (20) by construction. The series of the
functions Φi(ξ), i = 1, 2, 3, uniformly converge for ξ ∈ (0, 1).

Returning again to the variable y, we obtain the general solution to Eq. (18)

G(y) = A0 + A1G1(y) + A2G2(y) + A3G3(y), (26)

here

G1(y) = − 1
y3

∞∑
n=0

Δ(1)
n

(n + 3)yn
, G2(y) = −1

y

∞∑
n=0

Δ(2)
n

(n + 1)yn
− α

y3

∞∑
n=0

[
(n + 3) ln

1
y
− 1

]
Δ(1)

n

(n + 3)2yn
,

(27)

G3(y) =
y2

2
+ yΔ(3)

1 + Δ(3)
2 ln y − y2

∞∑
n=3

Δ(3)
n

(n − 2)yn
− β

y3

∞∑
n=0

[
(n + 3) ln

1
y
− 1

]
Δ(1)

n

(n + 3)2yn
.

The choice of constants Δ(1)
0 , Δ(2)

0 is performed so that the functions G1(y) and G2(y) tend to the
corresponding functions ([8], Chap. 4, P. 140) for the sphere at small relative temperature drops. Note
that the solution G3(y) to Eq. (18) does not meet boundary condition (19) for y → ∞.

The constants A0, A1, A2, and A3 are uniquely determined from boundary conditions (19). Clearly,
A0 = 1, A3 = 0, and we have the following equation system for the constants A1, A2:

1 + A1G1(1) + A2G2(1) = 0,

1 + A1[G1(1) +
1
2
G

′
1(1)] + A2

[
G2(1) +

1
2
G

′
2(1)

]
= 0.

(28)

System (28) has a unique solution due to the linear independence of the solutions G1 (y), G2 (y).

As a result of this study, we proved

Theorem. Function G(y) = A0 + A1G1(y)+ A2G2(y) with the coefficients A1, A2 defined by system
(28), and A0 = 1, is the only solution of Eq. (18) subject to boundary conditions (19).

We now determine the mass-velocity components Ue and the pressure Pe, which allow to reconstruct
the total force acting on a nonuniformly heated particle moving in a nonisothermal fluid. Taking into
account (10), (17) and the proved theorem, we have

Ur (y, θ) = U∞

[
1 + A1G1(y) + A2G2(y)

]
cos θ, (29)

Uθ (y, θ) = −U∞

[
1 + A1

(
G1(y) +

y

2
G′

1(y)
)

+ A2

(
G2(y) +

y

2
G′

2(y)
)]

sin θ. (30)

Since we know the explicit form of the functions Ur (y, θ) and Uθ (y, θ) from (29), (30), relation (12)
makes it possible to find the pressure field expression

Pe(y, θ) = P∞ +
μeU∞

R

[
y2

2
d3G(y)

dy3
+ 3y

d2G(y)
dy2

+ 2
dG(y)

dy
+

1
μe

dμe

dy

(
y2

2
d2G(y)

dy2
+ y

dG(y)
dy

)]
cos θ.
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The total force acting on the particle is determined by integrating the stress tensor over its surface
in a spherical coordinate system applying formula (9). Integrating (9) over the angles (0 ≤ θ ≤ π,
0 ≤ ϕ ≤ 2π), we obtain

Fz = 6πRμe∞U∞fμnz, fμ =
2N2

3N1
, (31)

here nz is the a unit vector on the axis Oz, N1 = G1(1)G′
2(1) − G2(1)G′

1(1), N2 = −G′
1(1).

A spherical particle falling under the action of gravity in a viscous non-isothermal fluid acquires a
constant velocity Up as soon as the gravity is balanced by the hydrodynamic forces.

The gravity force acting on a particle, balanced by the buoyancy force, equals

Fg = (ρiS − ρeS)g
4
3
πR3nz, (32)

where g is the gravity acceleration, ρiS and ρeS are the particle and fluid density taken at an average
surface temperature of the particle equal TS .

Equating (31) to (32) and taking into account that U∞ = −Up we obtain an expression for the
steady-state drop rate of a solid nonuniformly heated particle of spherical shape in the gravity force field
and in a viscous non-isothermal fluid

Up = hμnz, hμ =
2
9

ρiS − ρeS

μ∞f
R2g. (33)

So, formulas (31) and (33) make it possible to estimate the force acting on a nonuniformly heated
sphere and the rate of its gravitational incidence by taking into account the exponential-power form of
the fluid viscosity coefficients dependence on temperature for arbitrary relative temperature differences
between the particle surface and an domain far from it.

When the heating of the particle surface is sufficiently small, i.e., the average temperature of
the particle surface is insignificantly different from the ambient temperature far from it (γ = 0), the
dependence of the viscosity coefficient on temperature can be neglected and formulas (31) and (33) turn
into the known expressions for the sphere, obtained by Stokes for small relative temperature drops ([8],
P. 146):

FS = 6πRμe∞U∞nz, Up =
2
9

ρi∞ − ρe∞
μe∞

R2gnz.

For large relative differences the situation is completely different. The constant γ = TS/T∞ − 1
depends on the average surface temperature of the particle TS . In the case of uneven heating of
the surface, TS is determined from Eq. (15) and depends on the density of thermal sources that are
inhomogeneously distributed in the bulk of the particle. It follows that both the functions G1, G2 and
the viscosity coefficient also depend on the thermal sources density, because these functions include the
value γ, ultimately the same holds for the resistance force magnitude and the rate of incidence. In fact,
we can regulate the behavior of a non-uniformly heated solid particle in a viscous non-isothermal fluid.

In order to illustrate the comparison of the viscosity and the temperature contribution dependence in
the particle incidence rate in water at T∞ = 273 circK, we give the curves that relate the values of the
ratio h = hμ/hμ|TS=T∞ with the average surface temperature TS of large granite particles with a radius
of R = 10−5 m (see Figure).

The expression for the function h∗ is taken for small relative temperature drops ([8], P. 146), but the
viscosity is taken into account directly at the average surface temperature of the particle, i.e.,

FS = 6πRμe∞U∞nz, Up = h∗
μnz, h∗

μ =
2
9

ρi∞ − ρe∞

μ
(s)
e

R2g.

One can see from the graphs that the formulas give a significant error for small temperature
differences, even if the viscosity is taken into account directly at the average surface temperature of
the particle.

The numerical analysis carried out using the given formulas shows the nonlinear dependence of the
gravitational motion force and velocity on the average surface temperature of the particle. Analogous
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results also hold in the case of a heated spherical shape solid particle in gaseous medium motion [13, 14].
The results obtained for a system of hydrodynamic equations linearized in velocity allow to describe
a wide class of other physical problems, for example, deposition of particles in different-temperature
channels, sounding of the atmosphere by high-power laser radiation, development of methods for fine
cleaning fluids from hydrosol impurities or the like.
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