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Abstract⎯The concepts of the similarity and dissimilarity (difference) of analyzed objects play an important
role in many theoretical and practical problems of decision making, artificial intelligence, pattern recogni-
tion, processing of heterogeneous information, etc. The similarity or dissimilarity of objects is usually esti-
mated by their proximity in the attribute space. This paper considers new classes of metric spaces of finite,
bounded, and measurable sets and multisets. The possibilities are shown for using new types of metrics to
evaluate the similarity or dissimilarity of multi-attribute objects that are present in several instances with dif-
fering values of attributes and are represented by multisets of attributes.
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INTRODUCTION
In various theoretical and practical problems of

decision making, artificial intelligence, pattern recog-
nition, data processing, and in other subject areas
there is often a need to estimate the similarity or dis-
similarity of studied objects (variants or alternatives)
on the basis of their properties, which are expressed by
attributes of objects. The similarity or dissimilarity of
objects is usually estimated by their proximity in the
attribute space.

There is a rather wide range of problems where the
analyzed objects are given by many heterogeneous
attributes, that is, quantitative, qualitative, mixed,
continuous or discrete ones; as well, the same objects
are present in several instances (versions or copies)
with different values of attributes, whose convolution
is either impossible or mathematically incorrect. Dif-
ferent versions of object description arise in cases
when an object is estimated by several experts for many
criteria with numerical and/or verbal scales, or the
characteristics of the object are calculated several
times by different methods, or measured several times
by different instruments. Examples of such problems
are group classification and group ordering of multi-
attribute decisions, recognition of graphic symbols,
and processing of text documents. The multiplicity
and repetition of factors that describe objects compli-
cates and hinders the solution of such problems.

A convenient mathematical model for representing
the multi-attribute objects is a multiset or a set with

repeating elements. The multiplicity of elements is an
essential attribute of the multiset, which distinguishes
it from the set. This paper considers new types of met-
ric spaces of sets and multisets. The possibilities of
application of new types of pseudometrics and quasi-
metrics for estimating the similarity or dissimilarity of
multi-attribute objects that are present in several
instances with differing attribute values and are repre-
sented by multisets of attributes are shown.

1. MULTISETS AND OPERATIONS
ON MULTISETS

Let us briefly outline the main theses of the theory
of multisets [6, 7]. A multiset A generated by an ordi-
nary (crisp) set X = {x1, x2, …}, all elements xi of which
are distinct, is defined as a set of groups of identical
elements written in the form

(1)

Here, kA: X → Z+ = {0, 1, 2, …} is called a function
of the number of instances of a multiset, which specifies
the multiplicity of the occurrence of element x ∈ X in
multiset A that is denoted by symbol +. The multiset is
a generalization of the concept of a set and becomes a
set for kA(x) = χA(x), where χA(x) = 1 for x ∈ A and

χA(x) = 0 for x  A. Group kA(x) + x =  that unites
k identical elements x is called a component of multiset A.
A one-element set {x} = {x1} = {1 + x} is called a simple
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set or a singleton, while a one-component multiset {xk}
= {k + x} is called a simple multiset, multiple singleton, or
multiton. A “zero-point” set {x0} = {0 + x} is called a
zeron.

The set SuppA = {x ∈ A|χSuppA(x) = min[kA(x), 1]}
is called a carrier or a support set of the multiset A. The
cardinality of a multiset is defined as the total number
of all instances of elements of multisets, equal to the
sum of their multiplicities: cardA = |A| = ; the
dimension of a multiset is defined as the total number
of single instances of all elements of a multiset, equal
to the sum of their single multiplicities: dimA = /A/ =

 = | SuppA|. The maximum value of the mul-
tiplicity function altA = maxx ∈ XkA(x) is called the
height of multiset A.

Multisets A and B are said to be equal (A = B) when
kA(x) = kB(x), ∀x ∈ X. Multisets A and B are unequal
(A ≠ B) when kA(x) ≠ kB(x) for at least one x ∈ X. For
equal multisets, we have |A| = |B|, /A/ = /B/, SuppA =
SuppB, altA = altB. Multisets A and B are said to be of
equal cardinality if |A| = |B|; of equal dimension if /A/ =
/B/; of equal size if they are of equal cardinality and
equal dimension. Equal multisets are equal in size, the
converse statement, generally speaking, is not true.
The equality of multisets is an equivalence relation,
since it is reflexive (A = A), symmetric (A = B, B = A),
and transitive (A = B, B = C ⇒ A = C).

It is said that multiset A is included in multiset B
(A ⊆ B) when kA(x) ≤ kB(x), ∀x ∈ X. Multiset A is then
called a submultiset or a multisubset of multiset B, and
multiset B is an overmultiset or an initial, parent multi-
set of multiset A. In this case |A| ≤ |B|, /A/ ≤ /B/, SuppA ⊆
SuppB, altA ⊆ altB. As in the case of sets, the simul-
taneous fulfillment of conditions A ⊆ B and B ⊆ A
implies the equality of multisets A = B. If A ⊆ B, but
B  A, then multiset A is called the proper submultiset
of multiset B and denoted as A ⊂ B. The inclusion of
the multiset is the preorder relation, since it is reflexive
(A ⊆ A) and transitive (A ⊆ B, B ⊆ C ⇒ A ⊆ C).

Multiset Z is called maximal if all multisets A of the
family of multisets A are submultisets of multiset Z
(A ⊆ Z), that is, if kA(x) ≤ kZ(x); empty ∅ if k∅(x) = 0;
constant N[h] if  = h = const, h ∈ Z+, ∀x ∈ X.
Thus, the empty multiset ∅ is a constant multiset N[0]
of height 0, and the common set A, in particular, the
support SuppA of an arbitrary multiset A, is a constant

multiset N[1] of height 1. The maximal multiset Z can
also be considered as a constant multiset N[k] of height
k = kZ(x) = maxA ∈ AkA(x), ∀x ∈ X.

Let us assume that all the multisets that constitute
family A = {Ai}i ∈ I are submultisets of the same maxi-
mal multiset Z generated by some set X. Let us define
the following operations on multisets:

union

intersection

addition

subtraction

symmetric difference

complement

multiplication by a scalar (reproduction)

multiplication

n-th power

direct product
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direct n-th power

The supports of operations on multisets satisfy the
following relations:

Many of the properties of operations on multisets
are analogous to the properties of operations on ordi-
nary sets, including the idempotency of union and
intersection , , invo-

lution (double negation) of complementation ,
identity, commutativity, associativity, and distributiv-
ity of some operations. As in the case of sets, not all
operations on multisets are mutually commutative,
associative, and distributive. In addition, operations of
addition, multiplication by a scalar, multiplication,
and raising to an arithmetic power are not defined for
sets. In the transition from multisets to sets, operations
of multiplication and raising to an arithmetic power
turn into intersection, and operations of addition and
multiplication by a scalar become impossible.

For multisets, as well as for sets, there is a duality of
the operations of union and intersection in relation to
the complementation operation, similar to the laws of
De Morgan, and, in addition, there is a new type of
duality of operations of arithmetic addition and sub-
traction:

Multisets lack some of the properties of operations
that sets have. At the same time, new properties appear
that have no analogues for sets. As an example, in the
theory of sets, the following equalities are always satis-
fied: , where U is a universal
set. Unlike sets, for multisets the following relations,
which follow from the definition of complementation

of a multiset, are satisfied: A +  = Z, Z –  = A. At
the same time, both  = ∅,  = Z, A –  =

 – A = ∅ and  ≠ ∅,  ≠ Z, A –  ≠  –

A ≠ ∅ (there are also possible cases where A ⊆  and
where  ⊆ A). In addition, the empty multiset ∅ and
the maximal multiset Z are mutually complementary:

, and so .
Another very specific attribute of operations on

multisets of family A = {Ai}i ∈I is the possibility of their
linear combinations with the operation of multiplica-
tion by a scalar (reproduction), for example:

weighted union

weighted intersection

weighted arithmetic sum

weighted arithmetic product

weighted direct product

where the function of the number of instances is
given by

When bi = 1, the “weighted” operations turn into
the corresponding “unweighted” operations on multi-
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sets. The possibility of introducing and using linear
combinations of operations significantly increases the
array of means of operating with multisets. When turn-
ing from multisets to sets and replacing the multiplicity
function kA(x) by the characteristic function χA(x),
many of the above statements for multisets remain
valid for sets, but some can become indeterminate,
change, or lose meaning.

2. FAMILIES AND FUNCTIONS
OF MULTISETS

Let us consider some special types of families and
functions of multisets [6, 7, 11].

The family of all subsets of set A (power set), which
includes set A itself and the empty set ∅, is called a
Boolean of set A and is denoted by P(A). Boolean P(A)
is a set of all subsets of set A.

A family of all various submultisets of multiset A
over domain X (macroset) is called a macroset or a
Boolean of multiset A and is denoted by P(A). The
word various plays an important role here, since the
theory of multisets allows, generally speaking, unlim-
ited repeatability of elements in the same multiset and,
accordingly, the repeatability of multisets in the same
family of multisets. In family P(A), various subsets are
always present in a single instance, including multiset
A itself, which is the maximal multiset for family P(A),
set SuppA, and the empty multiset ∅. Boolean P(A) is
a set of submultisets of multiset A.

Let us call a family of all possible submultisets of
multiset A over domain X (power multiset) a multibool-
ean of multiset A and denote it as Q(A). Multiboolean
Q(A), in contrast to Boolean P(A), is a multiset in
which several identical submultisets of multiset A are
allowed. Support SuppQ(A) of multiboolean Q(A) is
Boolean P(A) of multiset A. If A ⊆ A, then P(A) ⊆ P(A) ⊆
Q(A). Some of the elements of Booleans P(A), P(A),
and multiboolean Q(A) themselves are sub(multi)sets
of other (multi)sets of these families.

The cardinality of a family of sets and multisets
P(A), P(A), and Q(A) is determined by the total num-
ber of its elements (respectively, subsets of set A and
submultisets of multiset A).

As an example, the cardinality of Boolean P(A),
the family of all subsets of the n-element set A = {x1, x2,
…, xn} is equal to card P(A) = |P(A)| = 2n = 2|A| = 2cardA.

The cardinality of Boolean P(A), the family of all
various subsets of the n-dimensional multiset A =
{kA(x1) + x1, kA(x2) + x2, …, kA(xi) + xn} over a finite n-
element set X = {x1, x2, …, xn} is equal to cardP(A) =
|P(A)| = (1 + kA(x1)) · (1 + kA(x2))·…·(1 + kA(xn)) =

.
The cardinality of multiboolean Q(A), the family of

all possible submultisets of an n-dimensional multiset
A = { (x1) + x1, (x2) + x2, …, (xi) + xn} over the

1
(1 ( ))

n
ii

k x
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1
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kA n
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finite n-element set X = {x1, x2, …, xn}, is equal to
cardQ(A) = |Q(A)| = 2m = 2|A| = 2cardA.

The capacity or volume of a family of sets and mul-
tisets is the sum of cardinalities of (multi)sets that
make up this family. Then, respectively, the volume of
Boolean P(A) of set A is volP(A) = ||P(A)|| =

 = , the volume of
Boolean P(A) of multiset A over set X is volP(A) =

||P(A)|| =  = , and the
volume of multiboolean Q(A) of multiset A over set X
is volQ(A) = ||Q(A)|| =  =

.

Thus, Boolean P(A) of set A = {a, b, c} consists of
sets ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, and {a, b, c}.
The cardinality of Boolean P(A) is equal to |P(A)| = 23 =
8, the volume ||P(A)|| = 12.

Boolean P(A) of multiset A = {3 + a, 1 + b, 2 + c} over
set A = {a, b, c} includes multisets {0 + a, 0 + b, 0 + c} =
∅, {1 + a, 0 + b, 0 + c} = {a}, {0 + a, 1 + b, 0 + c} = {b}, {0 +
a, 0 + b, 1 + c} = {c}, {1 + a, 1 + b, 0 + c} = {a, b}, {1 + a, 0 +
b, 1 + c} = {a, c}, {0 + a, 1 + b, 1 + c} = {b, c}, {2 + a, 0 +
b, 0 + c}, {0 + a, 0 + b, 2 + c}, {1 + a, 1 + b, 1 + c} = {a, b,
c} = SuppA, {3 + a, 0 + b, 0 + c}, {2 + a, 1 + b, 0 + c}, {2 + a,
0 + b, 1 + c}, {1 + a, 0 + b, 2 + c}, {0 + a, 1 + b, 2 + c}, {3 +
a, 1 + b, 0 + c}, {3 + a, 0 + b, 1 + c}, {2 + a, 0 + b, 2 + c}, {2 +
a, 1 + b, 1 + c}, {1 + a, 1 + b, 2 + c}, {3 + a, 0 + b, 2 + c}, {3 +
a, 1 + b, 1 + c}, {2 + a, 1 + b, 2 + c}, and {3 + a, 1 + b, 2 +
c} = A. The cardinality of Boolean P(A) is equal to
|P(A)| = 4 · 2 · 3 = 24, the volume of ||P(A)|| = 72. In
particular, the cardinality of Boolean P(∅) = {∅} of
the empty (multi)set ∅ is equal to |{∅}| = 20 = 1, the
volume capacity ||{∅}|| = 0.

Multiboolean Q(A) of multiset A = {3 + a, 1 + b, 2 + c}
over set A = {a, b, c} contains 1 multiset {0 + a, 0 + b, 0 + c} =
∅, 3 multisets {1 + a, 0 + b, 0 + c} = {a}, 1 multiset {0 +
a, 1 + b, 0 + c} = {b}, 2 multisets {0 + a, 0 + b, 1 + c} =
{c}, 3 multisets {1 + a, 1 + b, 0 + c} = {a, b}, 6 multisets
{1 + a, 0 + b, 1 + c} = {a, c}, 2 multisets {0 + a, 1 + b, 1 +
c} = {b, c}, 3 multisets {2 + a, 0 + b, 0 + c}, 1 multiset {0 +
a, 0 + b, 2 + c}, 6 multisets {1 + a, 1 + b, 1 + c} = {a, b, c} =
SuppA, 1 multiset {3 + a, 0 + b, 0 + c}, 3 multisets {2 +
a, 1 + b, 0 + c}, 6 multisets {2 + a, 0 + b, 1 + c}, 3 multisets
{1 + a, 0 + b, 2 + c}, 1 multiset {0 + a, 1 + b, 2 + c}, 1 mul-
tiset (3 + a, 1 + b, 0 + c}, 2 multisets {3 + a, 0 + b, 1 + c},
3 multisets {2 + a, 0 + b, 2 + c}, 6 multisets {2 + a, 1 + b,
1 + c}, 3 multisets {1 + a, 1 + b, 2 + c}, 1 multiset {3 + a,
0 + b, 2 + c}, 2 multisets {3 + a, 1 + b, 1 + c}, 3 multisets
{2 + a, 1 + b, 2 + c}, and 1 multiset {3 + a, 1 + b, 2 + c} = A.
The cardinality of multiboolean Q(A) is equal to |Q(A)| =
26 = 64, the volume ||Q(A)|| = 192.
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For a family of nonempty multisets A1, …, Ar, their

union  = A is called covering of multiset A, their

intersection  = A is overlapping of multiset A,

and their sum  is decomposition of multiset

A. If the multisets are pairwise disjoint ( ,
p ≠ q: such multisets are said to be disjoint), then cov-
ering and decomposition of multiset A coincide and
are called partition of multiset A. Multisets A1, …, Ar
that form the covering, overlapping, decomposition,
and partition of multiset A are called its blocks, and the
number r of blocks is the rank of covering, overlap-
ping, decomposition, or partition. Covering of multi-
set A of rank r is denoted as C|r(A) = {A1; …; As; …; Ar},
overlapping of multiset A of rank r as I |r(A) = {A1; …; As;
…; Ar}, decomposition of multiset A of rank r as D|r(A) =
{A1; …; As; …; Ar}, and partition of multiset A of rank r
as B|r(A) = {A1; …; As; …; Ar}, where blocks are sepa-
rated by semicolons. If all blocks are submultisets of
multiset A, in this case one speaks of partition of mul-
tiset A into classes. For the cardinality and volume of
covering C|r(A), overlapping I |r(A), decomposition
D |r(A), and partition B|r(A) of multiset A, we have:

Coverings and partitions of a set and coverings,
decomposition, and partitions of a multiset can be
ordered and unordered, depending on the priority of
their blocks.

As an example, a family of zerons {{0 + x1}; …; {0 +
xs}; …; {0 + xn}} is partition B|n(∅) of an empty
(multi)set ∅, a family of singletons {{1 + x1}; …; {1 + xs};
…; {1 + xn}} is partition B|n(X) of the set X = {x1, …, xn},
a family of multitons {{kA(x1) + x1}; …; {kA(xs) + xs}; …;
{kA(xn) + xn}} is partition B|n(A) of multiset A = {kA(x1)
+ x1, …, kA(xs) + xs}, …, kA(xn) + xn} with the number of
blocks r = |X| = n. Boolean P(A) of set A is covering
C|r(A) of the set A with the number of blocks r = |P(A)| =
2|A|. Boolean P(A) of the n-dimensional multiset A =
{kA(x1) + x1, …, kA(xn) + xn} over the finite set X = {x1, …,
xn} is covering C|r(A) of multiset A with the number of

blocks r = |P(A)| = .

A family of multisets over set X = {x1, x2, …} is called
semiring E of multisets if it contains an empty multiset
∅, intersection  of multisets Ai, Aj ∈ E, and
every multiset A ∈ E is representable as a finite union

 = A of disjoint submultisets As ⊂ A; ring K of
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submultisets if it contains an empty multiset ∅, union
, sum Ai + Aj, and difference Ai – Aj of multisets

Ai, Aj ∈ K; algebra S of multisets if it is a ring that
includes the maximal set, called a unit of algebra, and
is closed in relation to finite unions, additions, and
complements of multisets; σ-ring Kσ of multisets if it is

a ring and contains a countable union  and

sum  of multisets As ∈ Kσ, δ-ring Kδ of multi-
sets if it is a ring and contains a countable intersection

 of multisets As ∈ Kδ, σ-algebra Sσ of multisets
if it is an σ-ring, contains a unit of algebra, and is
closed in relation to countable unions, additions, and
complements of multisets.

In particular, every ring of sets/multisets is a semir-
ing of sets/multisets, and every σ-algebra of sets/mul-
tisets is a δ-algebra of sets/multisets, and vice versa.

Boolean P(A) of set A is the minimal algebra of
subsets of set A, which is a unit of the algebra. The
Boolean algebra B(A) of subsets of set A is σ-algebra of
set X, which is a unit of the algebra, and family P(A) is
the support of the algebra. Boolean P(A) of the n-
dimensional multiset A = {kA(x1) + x1, …, kA(xn) + xn}
over the finite set X ={x1, …, xn} is the minimal algebra
of submultisets of multiset A, which is a unit of algebra.
The Boolean algebra B(A) of submultisets of multiset
A = {kA(x1) + x1, kA(x2) + x2, …} over the infinite set X =
{x1, x2, …} is σ-algebra of multiset A, which is a unit of
algebra.

When turning to sets, decomposition of the set will
be impossible, and covering, partition, semiring, ring,
and algebra of the multiset will turn into the covering,
partition, semiring, ring, and algebra of the set,
respectively.

A nonnegative real function of multiset m: A → R,
defined on family A, is said to be a strongly additive or
a strongly finitely additive measure if for any finite set of
multisets Ai ∈ A the following equality holds:

(2)

and a strongly σ-additive or a strongly countable addi-
tive measure if for any countable collection of multisets
Ai ∈ A the following equality holds:

(3)

As family A we have semiring E, ring K, σ-ring Kσ,
or σ-algebra Sσ of submultisets Ai of some multiset A =
{kA(x1) + x1, kA(x2) + x2, …} over set X = {x1, x2, …}. Such
a multiset A can be, for example, the maximal multiset
Z = {kZ(x1) + x1, kZ(x2) + x2, …}, constant multiset Z[k] =
{k + x1, k + x2, …}, or n-dimensional multiset X =

i j∪A A
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{kX(x1) + x1, …, kX(xn) + xn}. From the identity property
of an empty multiset ∅ = ∅ + ∅ and equality (2) it fol-
lows that m(∅) = m(∅ + ∅) = 2m(∅), and hence
m(∅) = 0.

For any finite or countable partition of multiset A,
the sum of submultisets coincides with their union

. Then, expressions (2) and (3) for dis-

joint multisets  = ∅, i ≠ j, Ai, Aj ∈ A can be
written as

(4)

(5)

A multiset measure that satisfies condition (4) will
be called weakly additive or weakly finitely additive,
and a measure that satisfies condition (5) will be called
weakly σ-additive or weakly countably additive.

The strongly additive multiset function is also
weakly additive. The converse, generally speaking, is
not true. The weak additivity (4), (5) of the multiset
function coincides with the finite and countable addi-
tivity of the set function. For sets, the addition opera-
tion is not feasible and there is no strong additivity of
the function. Thus, the additivity of multiset functions
is more diverse than the additivity of set functions.

The measure m of a multiset also has the properties
of monotonicity m(A) ≤ m(B) ⇔ A ⊆ B; symmetry
m(A) + m( ) = m(Z); continuity limi → ∞m(Ai) =
m(limi → ∞Ai); and elasticity m(b•A) = bm(A), where
b ≥ 1 is an integer. Let the measure of singleton {xi} be
equal to m({xi}) = wi, 0 ≤ wi < ∞. Then, according to
equalities (2) and (3), the function defined on the
family of multisets A

(6)

is strongly additive or, respectively, strongly σ-additive
measure of a multiset. If in (6) all the numbers are wi = 1,
we obtain: m(A) =  = |A|. Thus, the cardinal-
ity of a multiset is a special case of its measure.

Let us note the important properties of the multiset
measure that are due to its strong additivity and resem-
ble the properties of the cardinality of a multiset:

(7)
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(8)

The space of multisets with a measure is defined to be
a pair (Sσ(Z), m), where Sσ(Z) is σ-algebra over a
maximal multiset Z, m is a σ-finite measure defined
on σ-ring Kσ of submultisets Ai ⊆ Z that form the

decomposition of multiset Z = . The sum,
union, and intersection of a finite number of measur-
able multisets, the difference and the symmetric dif-
ference of two measurable multisets, and the repro-
duction of a measurable multiset are measurable mul-
tisets. Necessary and sufficient conditions for the
measurability of a multiset are formulated as follows
[6, 7]. Multiset A belonging to σ-ring Kσ is measurable
if and only if for any ε > 0 there exists a measurable
multiset B ∈ Kσ such that inequality m(AΔB) < ε is sat-
isfied.

3. METRIC SPACES OF MULTISETS
A set in which the concept of proximity of elements

is defined in some way is usually called a space and its
elements are called points of space. A nonnegative real
function dX defined on the direct product X × X of set
X is called a metric on set X if for any elements the fol-
lowing axioms are satisfied: axioms of (10) symmetry
dX(x, y) = dX(y, x); (20) identity dX(x, y) = 0 ⇔ x = y;
and (30) triangle dX(x, y) ≤ dX(x, z) + dX(z, y). The
numerical value of function dX(x, y) is called the dis-
tance between elements x and y of set X. Requirements
(10)–(30) imply the nonnegativity of metric dX(x, y) ≥
0. Set X with metric dX defined on it is called a metric
space and is denoted by (X, dX).

A metric space X is said to be metrically convex or
d-convex if for any noncoinciding elements x, y ∈ X, x ≠
y there exists a distinct element z ∈ X, z ≠ x, z ≠ y such
that the triangle inequality (30) becomes equality dX(x,
y) = dX(x, z) + dX(z, y). Metric dX that satisfies this
condition will be called d-convex. The property of the
metric convexity of the space (X, dX) is the spatial ana-
log of the ternary relation [x, z, y] “element z lies
between elements x and y,” which in an arbitrary par-
tially ordered set is given by condition inf(x, y) ≤ z ≤
sup(x, y).

The relative positions of the elements of set X are
also estimated using other indices of the proximity of
the elements, which are based on the incomplete axi-
omatics of the metric space. The nonnegative real
function dX defined on the direct product X × X, which
satisfies the symmetry axiom (10) and the coincidence
condition (40) dX(x, x) = 0 for all x ∈ X, is called a qua-
simetric, and the one that satisfies the triangle axiom
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(30) is called a pseudometric on set X. The correspond-
ing spaces (X, dX) are called quasimetric and pseudo-
metric. In the quasi- and pseudometric spaces the
identity axiom (20) for function dX is not satisfied, that
is, condition dX(x, y) = 0 does not, in general, imply
the equality of elements x and y. The coincidence con-
dition (40) is weaker than the identity axiom (20).
Therefore, every metric is also a quasimetric and a
pseudometric. The converse is not true in the general
case.

A nonnegative real function dX defined on the
direct product X × X and that satisfies the symmetry
(10) and identity (20) axioms is called a symmetric on
set X, and set X with the symmetric dX is called a prox-
imity space. Symmetric dX that satisfies the inequality
(50) dX(x, y) ≤ maxz ∈ X[dX(x, z), dX(z, y)] for any ele-
ments of set X is called the ultrametric on set X or the
ultrametric distance between elements x and y. It is
easy to verify that the triangle axiom (30) also holds for
the ultrametric. Thus, ultrametric dX satisfies the axi-
omatics of the metric space, and space (X, dX) with
ultrametric dX is metric. The inequality (50) is stronger
than the triangle inequality (30). Therefore, any ultra-
metric is also a metric. The converse is not true in the
general case.

Let us consider possible approaches to the forma-
tion of metric spaces (A, dA) on families of A sets and
A multisets. Any set A ⊆ X and multiset A ⊆ Z over set
X = {x1, …, xn} can be associated with an integer vector
y = (y1, …, yn) whose components are given by, respec-
tively, as yi = χA(xi) = 0, 1 for set A and yi = kA(xi) = 0,
1, 2, … for multiset A, xi ∈ X. As an example, vector
(1,1,1,1,1,1,1,1) corresponds to set X = {a, b, c, d, e, f,
g}, vector (0,0,0,0,0,0,0) corresponds to the empty
(multi)set ∅, vector (1,0,0,0,0,0,0,0) corresponds to
singleton {a}, vector (0,2,0,0,0,0,0,0) corresponds to
multiton {2 + b}, vector (1,1,1,0,0,0,0,0) corresponds to
set A = {a, b, c}, and vector (3,1,2,0,0,0,0) corresponds
to multiset A = {3 + a, 1 + b, 2 + c}.

We use an analogy with known types of metric
spaces: vector spaces  and spaces of bounded numer-
ical sequences lp [1].

Boolean P(X) of various submultisets of an
n-dimensional multiset X = {kX(x1) + x1, …, kX(xn) + xn}
over the finite set X = {x1, …, xn} is equivalent to set Rn

of n-dimensional vectors ys = ( ) with real
components  =  and forms a metric space of
finite multisets [19]:

P1 = (P(X), ) with the Hamming-type metric

(9)

P2 = (P(X), ) with the Euclidean-type metric
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(10)

Pp = (P(X), ) with the Minkowski-type metric

(11)

P∞ = (P(X), ) with the Chebyshev-type metric

(12)
Here, p ≥ 1 is an integer.

σ-algebra Sσ(X) of different submultisets of multi-
set X = {kX(x1) + x1, kX(x2) + x2, …}, over an arbitrary set
X = {x1, x2, …}, where any submultiset As ⊆ X satisfies
the boundedness condition  or

 for all integers p ≥ 1, is equiv-
alent to set RN of bounded numerical sequences Ys =
{ } = { , , …} with real terms  =  that sat-

isfies the condition | | ≤ cs < ∞ or 
for all integers p ≥ 1 and forms a metric space of
bounded multisets:

S1 = (Sσ(X), ) with the Hamming-type metric

(13)

S2 = (Sσ(X), ) with the Euclidean-type metric

(14)

Sp = (Sσ(X), ) with the Minkowski-type metric 

(15)

S∞ = (Sσ(X), ) with the Chebyshev-type metric

(16)
Let us note that expressions (9)–(11) and (13)–

(15) comprise the cardinality |AΔB| =
 of the symmetric difference of

multisets A and B, which plays the role of the metric.
Replacing the multiplicity function kA(x) by the char-
acteristic function χA(x) in formulas (9)–(16) we
obtain definitions of metric spaces of finite and
bounded sets.

The space (Sσ(Z), m) of multisets with a measure,
where multisets As ⊆ Z that comprise the σ-algebra
Sσ(Z) of the maximal multiset Z = {kZ(x1) + x1, kZ(x2) +
x2, … } over set X = {x1, x2, …} are measurable and mea-
sure m of the multiset is strongly σ-additive and com-
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338 PETROVSKY
pletely σ-finite, forms the metric spaces of measurable
multisets Zqp = (Sσ(Z), ), where q = 1, 2, 3, 4, p ≥ 1
is an integer, with the functions

(17)

(18)

(19)

(20)

Functions  and  are not defined for A = B =
∅; therefore, by definition, we take (∅, ∅) =

(∅, ∅) = 0. Function  defines mapping :
Sσ × Sσ → R+, and functions , , and 
define mapping : Sσ × Sσ → R01 = [0, 1]. Func-
tions (A, B), q = 1, 2, 3 are pseudometrics that sat-
isfy the symmetry (10) and triangle (30) axioms and the
coincidence condition (40), and function (A, B) is
a quasimetric that satisfies the symmetry axiom (10)
and the coincidence condition (40). In the general
case, condition m(AΔB) = 0 does not imply that A = B.
For multisets that differ by a multiset of measure zero,
condition m(AΔB) = 0 implies the m-equality of such
multisets A = mB, and then for functions (A, B),
q = 1, 2, 3, 4, the identity axiom (20) also holds. Func-
tions , , and  become metrics, and function

 is symmetric almost everywhere on σ-algebra
Sσ(Z) of measurable multisets. The proofs of these
statements for pseudometrics were given in [6, 7], and
for a quasimetric, in the appendix.

Let us call pseudometric (A, B) on space
(Sσ(Z), m) of measurable multisets general, pseudo-
metric (A, B) completely averaged, pseudometric

(A, B) locally averaged, and quasimetric (A, B)
averaged. The completely averaged pseudometric

(A, B) characterizes the proximity of two multisets
A and B, referred to the maximal possible distance in
the original space. The locally averaged pseudometric

(A, B) characterizes the proximity of two multisets
A and B, referred to the joint “common part” of these
two multisets in the original space. The averaged qua-
simetric (A, B) characterizes the proximity of two
multisets A and B, referred to the maximal possible
“common part” of these two multisets in the original
space.

The basic pseudometric (A, B) = [m(AΔB)]1/p

and the completely averaged pseudometric (A, B) =
[m(AΔB)/m(Z)]1/p are continuous, uniformly continuous,
and equicontinuous functions, and the locally averaged
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pseudometric (A, B) =  and
the averaged quasimetric (A, B) = [m(AΔB) =
[m(AΔB)]/m(A + B)]1/p are piecewise continuous
functions of their variables almost everywhere on the
corresponding metric space for any number p [6, 7].
Pseudometrics (A, B), q = 1, 2, 3 and quasimetrics

(A, B) are not similar to any metrics of other met-
ric spaces, in particular, to Minkowski-type metrics
(11), (15). When wi = 1 for all i in formula (6), the gen-
eral pseudometric (A, B) = |AΔB| coincides with
the Hamming-type metrics (9), (13).

The metric spaces of multisets have the following
properties [6, 7]. The spaces Pp, P∞ of finite multisets

are metrically convex, - and lp-embeddable, every-
where dense, separable, incomplete, noncompact, but
relatively compact. The spaces Sp, S∞ of bounded mul-
tisets are metrically convex, separable, complete, non-
compact, but locally compact. The spaces Z1p =
(Sσ(Z), ), Z2p = (Sσ(Z), ) of measurable multi-
sets are homeomorphic, complete, and separable. The
spaces Z11 = (Sσ(Z), ), Z21 = (Sσ(Z), ), Z31 =
(Sσ(Z), ) of measurable multisets are metrically
convex, and, in addition, the spaces Z11 and Z21 are iso-
metric to the space of bounded numerical sequences l1.

When the multiplicity function kA(x) is replaced by
the characteristic function χA(x), the metric spaces of
measurable multisets are transformed into the metric
spaces of measurable sets that have many similar prop-
erties. The general metric (A, B) = m(AΔB) or

(A, B) = |AΔB| is called the Fréchet–Nikodym–
Aronshayan distance or a metric of measure. The
locally averaged metric (A, B) =

 is called the Steinhaus distance

and (A, B) =  is called the biotopic
distance [1–3]. The spaces of measurable sets and
multisets with metrics of the form (17)–(20) were first
introduced in our papers [8–10].

4. REPRESENTATION AND COMPARISON
OF MULTI-ATTRIBUTE OBJECTS

Let us discuss possible ways of representing and
comparing objects that are present in several differing
instances (versions or copies) and are described by
many quantitative and qualitative attributes [12, 15].

Let us first consider the situation where the avail-
able objects A1, …, Am are in single instances and are
characterized by attributes K1, …, Kn with numerical

and/or verbal scales of estimates Xl = { , …, }, l =
1, …, n. Traditionally, each object Ai, i = 1, …, m is

associated with a vector or tuple xi = ( , …, ),
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where  is one of the gradations on scale Xl of attri-
bute Kl. Vector/tuple xi is a point of the n-dimensional
space X = X1× … ×Xn formed by the scales of estimates
of attributes K1, …, Kn. The collection of multi-attri-
bute objects A1, …, Am and their attributes can also be
represented by the table Objects–Attributes F = || ||m × n.
Rows of matrix F correspond to objects, columns cor-
respond to attributes, and elements  of the matrix

are values of components  of vectors/tuples that
specify objects.

The situation becomes significantly more compli-
cated when the same multi-attribute object Ai, i = 1,
…, m is present in several instances (versions or copies)

, s = 1, …, t, which differ in the attribute values K1,
…, Kn. In such cases, the object Ai will be associated
not with one vector/tuple but a group of t vec-
tors/tuples { , …, }. Here, the vector/tuple  =
( , …, ) describes one of the versions  of

object Ai, and the component  = Kl( ) is the

attribute value Kl in the s-th version  of object Ai,
which is equal to xj, j = 1, …, h if all attributes K1, …, Kn

have the same scale of estimates X = {x1, …, xh}, or ,
el = 1, …, hl if attributes K1, …, Kn have their own scales

of estimates Xl = { , …, }, l = 1, …, n.
The collection of objects A1, …, Am, each of which

exists in several versions , and their attributes can
again be represented by the table Objects–Attributes
F# = || ||tm × n, but have a larger dimension. The num-
ber of rows of matrix F# is equal to the number of all
versions of objects, the number of columns is equal to
the number of attributes, and elements  of the

matrix are values of components  of vectors/tuples
that specify different versions of objects.

Object Ai is now represented in the n-dimensional
space of attributes X = X1× … ×Xn not by a single point
xi but by an entire group (cloud) consisting of t points

{ , …, }. It is important to note that the group of
vectors/tuples , …,  that represent object Ai
should be treated as a single whole. In this case, gen-
erally speaking, individual values of attributes of dif-
ferent versions of object Ai (estimates of different
experts, characteristics measured in different ways or
instruments) can be similar, different, and even con-
tradictory, which in turn can lead to incomparability
of vectors/tuples that represent the same object Ai.

The collection of such multi-attribute objects A1, …,
Am, each of which is represented in the attribute space
X = X1× … ×Xn by its cloud consisting of t different
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points, can have a rather complex structure that is dif-
ficult to analyze. Therefore, it is highly desirable to
somehow simplify the description and aggregate the
representation of such multi-attribute objects.

One possible approach to simplifying the descrip-
tion of the multi-attribute object Ai represented by a

group of vectors , …,  is as follows. Since com-
ponents of any vector  = Kl( ) are numerical val-
ues, in the attribute space X = X1× … ×Xn, instead of a

group of vectors, one can specify a single vector  =
( , …, ), which will correspond to object Ai.

The components of vector  are determined from
some additional significant considerations or formal
conditions. As an example, it can be a vector that is the
center of a group, a vector closest to all vectors in a
group, or a vector with averaged or weighted values of
components of vectors in a group.

However, when the attribute scales have discrete
numerical estimates, the “averaged” vector may not
physically exist in the original n-dimensional attribute
space X = X1× … ×Xn, since there are no correspond-
ing numerical grades on the scales. In order to be able
to operate with such vectors, it is necessary either to
expand the initial scales of estimates by introducing
intermediate numerical grades or to consider the
scales of estimates to be continuous. Both, strictly
speaking, change the original formulation of the prob-
lem. When objects are represented by tuples with sym-
bolic, verbal or mixed values of components, a group
of such tuples in principle cannot be replaced by a sin-
gle tuple with averaged, weighted, or mixed estimates
since such operations are mathematically not feasible.

If the group consists of only two vectors/tuples,
then it is not possible to introduce some single object
as a typical representative of the group, for example,
one closest to all objects of the group. This is true for
both numeric and symbolic attribute scales.

These and other similar difficulties can be over-
come if we use the formalism of the theory of multi-
sets, which allows us to take simultaneously heteroge-
neous attributes, possible combinations of attribute
values, and the presence of different versions of
objects into account.

Let all attributes K1, …, Kn have the same scale of
estimates X = {x1, …, xh}. Let us choose set X as a gen-
erating set and associate each object Ai, i = 1, …, m
with a multiset of the form (1)

(21)

over set X = {x1, …, xh}. Here, the value of the multi-
plicity function  shows how many times esti-
mate xj, j = 1, …, h is present in the description of
object Ai. In this case, the collection of objects A1, …,
Am and their attributes can be represented by the table
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Objects–Attributes G = ||kij||m × h. The rows of matrix G
correspond to objects, the columns correspond to val-
ues of the X scale of attributes, and the elements kij

correspond to the multiplicity values  of xj ele-
ments of the multisets defining the objects.

Let us suppose now that each attribute Kl has its

own scale of estimates Xl = { , …, }, l = 1, …, n. Let
us introduce a single scale (hyperscale) of attributes:
set X =  = { , …, ; …; , …, },
which consists of n groups of attributes and combines
all gradations of the estimates on the scales of all attri-
butes. Then, each object Ai will be associated with the
multiset

(22)

over set X = { , …, ; …; , …, } of gradations of
scales of criteria. Here, the value of the multiplicity
function  shows how many times estimate

 el = 1, …, hl for attribute Kl is present in the
description of object Ai.

Despite the seemingly cumbersome representation
of multi-attribute objects using multisets, these forms
of notation are extremely convenient when comparing
objects and performing operations, since calculations
are carried out in parallel and simultaneously on all
elements of all multisets. Let us note that expression
(22) can also be easily written in the “usual” form (21)
if we make a change of variables in set X = { , …, ;
…; , …, }:  = x1, …,  = ,  = , …,  =

, …,  = xh, h = h1+…+hn.
The collection of objects A1, …, Am and values of

their attributes, represented by multisets of the form
(22), can be defined by another table, Object–Attri-
butes H = ||kij||m × h, h = h1+ … +hn. The rows of matrix
H correspond to objects, the columns correspond to
values of the attribute scales Xl, and the elements kij

correspond to the multiplicity values  of ele-

ments  of the multisets defining the objects.
The variety of operations over multisets provides

the ability to group multi-attribute objects in different
ways. It is common to combine objects into groups
using the operation of adding vectors or combining
sets. In the case of multisets, group Df of objects can be

formed as a sum Cf = , ,

union Cf = , , intersection

Cf = , , or as a linear com-

bination Cf = , Cf = , Cf = 
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of multisets that define the objects. When group Df is
formed by adding multisets, all properties (all values of
all attributes) of all terms of the group are aggregated.
When multisets are united or intersected, the best
properties (maximum values of all attributes) or,
respectively, the worst properties (minimum values of
all attributes) for individual terms of the group
increase.

Let us associate each version , i = 1, …, m, s =
1, …, t of the multi-attribute object Ai with multiset  =

{ (x1) + x1, …., (xh) + xh}, and each object Ai with
multiset Ai = { (x1) + x1, …, (xh) + xh} over the set of

estimates X = {x1, …, xh} or X =  = { , …,

; …; , …, }. Multiset Ai representing object Ai as
a whole will be formed by weighted addition of the
multisets that describe the versions of this object: Ai =

+…+ , where the multiplicity function is
calculated by the rule (xj) = , j = 1, …,

h.  characterizes the significance of the s-th version
(expert competence or measurement accuracy) whose
values are sometimes normalized by .

The objects A1, …, Am, each of which exists in sev-
eral versions, and the values of whose attributes are
represented by multisets of the form (21) or (22), can
be specified by the tables Objects–Attributes G# =
||kij||tm × h, H# = ||kij||tm × h, or H = ||kij||m × h, h = h1+…+hn.
Elements kij of matrices G#, H#, or H are multiplicities

, , or  of elements of the multi-

sets that describe the corresponding versions  of
objects Ai or the objects Ai themselves.

5. AN ILLUSTRATIVE EXAMPLE
There is a collection consisting of ten objects A1, …,

A10 described by eight attributes K1, …, K8, each of
which takes one of the values on a five-point scale of
estimates X = {x1, x2, x3, x4, x5} [15]. As an example,
objects A1, …, A10 are survey questions for studying
public opinion on a certain issue. Then, the attributes
of the objects are the answers of eight respondents K1, …,
K8, which are coded as follows: x1, 1/totally disagree;
x2, 2/disagree; x3, 3/neutral; x4, 4/agree; x5, 5/com-
pletely agree. Alternately, the objects A1, …, A10 could
be schoolchildren and the object attributes are their
annual scores in eight subjects: K1, Mathematics; K2,
Physics; K3, Chemistry; K4, Biology; K5, Geography;
K6, History; K7, Literature; K8, Foreign Language. The
gradations of the estimates mean the following: x1,
1/very bad; x2, 2/bad; x3, 3/satisfactory; x4, 4/good; x5,
5/excellent.
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Table 1. Data table F

A\K K1 K2 K3 K4 K5 K6 K7 K8

A1 4 5 4 5 4 5 4 5
A2 4 1 2 1 3 2 2 2
A3 1 1 3 1 4 1 1 4
A4 5 3 2 4 4 5 4 5
A5 4 4 4 4 4 5 4 4
A6 5 5 4 4 4 5 5 4
A7 4 1 2 3 3 3 1 2
A8 4 5 4 2 3 4 5 3
A9 3 2 3 1 3 3 2 2
A10 5 5 4 5 3 5 5 4

Table 2. Data table G

A\X x1 x2 x3 x4 x5

A1 0 0 0 4 4
A2 2 4 1 1 0
A3 5 0 1 2 0
A4 0 1 1 3 3
A5 0 0 0 7 1
A6 0 0 0 4 4
A7 2 2 3 1 0
A8 0 1 2 3 2
A9 1 3 4 0 0
A10 0 0 1 2 5
Table 1, Objects–Attributes F, borrowed from [5]
characterizes answers of university students who eval-
uated a course of lectures using numerical estimates.
The same results of a student survey or schoolchildren
scores recorded as multisets of numerical or verbal
estimates are presented in Table 2, Objects–Attributes
G. As an example, in Table 1 the answers of eight stu-
dents to question A1 are given by the vector/tuple of
estimates x1 = (4, 5, 4, 5, 4, 5, 4, 5), while in Table 2
they are given by a multiset of estimates of the form
(21): A1 = {0 + x1, 0 + x2, 0 + x3, 4 + x4, 4 + x5}. The last
form of notation shows that object A1 has four esti-
mates x4 that mean “agree” or “good,” four estimates
x5 that mean “completely agree” or “excellent,” and
there are no other estimates for object A1. If object A1
is characterized by estimates for each of attributes K1,
…, K8 with different scales, then A1 is represented by a
multiset of the form (22):

Now, let each object be present in several instances
(versions or copies) differing between each other. As
an example, eight respondents K1, …, K8, who gave
answers to the same questions A1, …, A10, were polled
twice. Alternatively, schoolchildren A1, …, A10 received
scores for the same eight disciplines K1, …, K8 in each
semester, that is, twice a year. Thus, each object will be
specified not by one but by two vectors/tuples of attri-
butes, or by two multisets. Formally, we can assume
that the method used to describe versions of the object
is an expression of the individual opinion of an expert,
and the description of the object “in general” is an
aggregate collective judgment of two experts.

The different versions of the objects are defined in
Tables 3 and 4, Objects–Attributes F# and G#, respec-
tively. In Table 3, object A1 is represented by a group of

two vectors/tuples  = (4, 5, 4, 5, 4, 5, 4, 5) and  =
(5, 5, 5, 5, 4, 4, 4, 5). The aggregated estimates of
object A1, when averaged, will be described by vector

 = (4.5, 5.0, 4.5, 5.0, 4.0, 4.5, 4.0, 5.0) of the “aver-
age” estimates, although non-integer numbers are
absent in the established five-point scale X = {1, 2, 3 ,
4, 5}. Two versions of object A1 are represented in

Table 4 by multisets of estimates of the form (21)  =

{ 1 2 3 4 5
1 1 1 1 1 1

1 2 3 4 5
2 2 2 2 2
1 2 3 4 5
3 3 3 3 3
1 2 3 4 5
4 4 4 4 4
1 2 3 4 5
5 5 5 5 5
1 2 3 4 5
6 6 6 6 6
1 2 3
7 7 7
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{0 + x1, 0 + x2, 0 + x3, 4 + x4, 4 + x5} and  ={0 + x1, 0 + x2,
0 + x3, 3 + x4, 5 + x5}. For simplicity, we will consider the
respondents as equally competent or semester scores
to be equally significant:  =  = 1. Then, object A1
“as a whole” is described by multiset

Similarly, objects A2, A4, A6, A7, and A8 are defined by
multisets

A 2
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Table 3. Data table F#

A\K K1 K2 K3 K4 K5 K6 K7 K8

A1 4 5 4 5 4 5 4 5
5 5 5 5 4 4 4 5

A2 4 1 2 1 3 2 2 2
3 2 1 1 4 3 3 2

A3 1 1 3 1 4 1 1 4
1 2 3 1 5 2 1 3

A4 5 3 2 4 4 5 4 5
4 4 3 5 4 5 3 4

A5 4 4 4 4 4 5 4 4
5 5 3 4 4 4 5 4

A6 5 5 4 4 4 5 5 4
4 5 4 4 4 4 5 5

A7 4 1 2 3 3 3 1 2
3 2 1 4 2 4 2 3

A8 4 5 4 2 3 4 5 3
5 4 5 3 4 5 4 4

A9 3 2 3 1 3 3 2 2
4 3 2 2 2 3 3 2

A10 5 5 4 5 3 5 5 4
3 4 3 4 2 4 2 4

Table 4. Data table G#

A\X x1 x2 x3 x4 x5

A1 0 0 0 4 4
0 0 0 3 5

A2 2 4 1 1 0
2 2 3 1 0

A3 5 0 1 2 0
3 2 2 0 1

A4 0 1 1 3 3
0 0 2 4 2

A5 0 0 0 7 1
0 0 1 4 3

A6 0 0 0 4 4
0 0 0 5 3

A7 2 2 3 1 0
1 3 2 2 0

A8 0 1 2 3 2
0 0 1 4 3

A9 1 3 4 0 0
0 4 3 1 0

A10 0 0 1 2 5
0 2 2 4 0
Table 5 Objects–Attributes H shows objects A1, …,
A10 “generally” and the values of their attributes given
by multisets of the form (22). Thus, for example,
object A1 is associated with the following multiset of
estimates:

The table Objects–Attributes H#, which represents
individual versions of objects and their attributes, is
rather cumbersome and is not given for brevity.

The proximity of objects in the space of attributes is
characterized either by their difference or by the simi-
larity of their properties. We will consider the multi-
attribute object Ai represented by multiset Ai as a point
of the metric space of multisets (A, d), A = {A1, …, Am},
where d is one of the metrics (9)–(20). In practical
problems, the difference between objects Ai and Aj is
conveniently estimated by one of the metrics (17)–
(20), which we write in the following form:

(23)
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Table 5. Data table H

A\X

A1 0 0 0 1 1 0 0 0 0 2 0 0 0 1 1 0 0 0 0 2 0 0 0 2 0 0 0 0 1 1 0 0 0 2 0 0 0 0 0 2
A2 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 2 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 2 0 0 0
A3 2 0 0 0 0 1 1 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 1 1 1 1 0 0 0 2 0 0 0 0 0 0 1 1 0
A4 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 2 0 0 0 0 0 2 0 0 1 1 0 0 0 0 1 1
A5 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 2 0 0 0 0 2 0 0 0 0 1 1 0 0 0 1 1 0 0 0 2 0
A6 0 0 0 1 1 0 0 0 0 2 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 1 1 0 0 0 0 2 0 0 0 1 1
A7 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0
A8 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0
A9 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 2 0 0 0 1 1 0 0 0 0 2 0 0
A10 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 2 0

1 2 3 4 5
1 1 1 1 1x x x x x 1 2 3 4 5

2 2 2 2 2x x x x x 1 2 3 4 5
1 3 3 3 3x x x x x 1 2 3 4 5

4 4 4 4 4x x x x x 1 2 3 4 5
5 5 5 5 5x x x x x 1 2 3 4 5

6 6 6 6 6x x x x x 1 2 3 4 5
7 7 7 7 7x x x x x 1 2 3 4 5

8 8 8 8 8x x x x x
The measure of the multiset is given as a linear
combination (6) of multiplicity functions: m(A) =

 = , where wi > 0 is
the significance (weight) of element xi or, which is the
same, of attribute Kl, l = 1, …, n. For quantities Lij, Mij,
Nij, and Sij, relations Nij = Mij + Lij, Sij = Mij – Lij are
satisfied.

The similarity between objects can be expressed by
one of the following indicators:

(24)

Expressions s0, s1, s2, s3, and s4 (24) generalize for
the case of multisets the known nonmetric indices of
the similarity of objects such as, respectively, the mea-
sure of absolute similarity, the Russell–Rao similarity
measure, the simple matching coefficient, the Jac-
quard coefficient or the Rogers–Tanimoto measure,
and the Sørensen index [4, 18].

In the example, the closest in the space of multisets
(A, d11) are objects A4 and A8, which lie at a distance
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The group D01, which includes objects A4 and A8, is
associated with multiset C01 formed by adding the
multisets:

Two pairs of objects A1 and A6, A2 and A7 are at the
same distances:

Objects A1 and A6 form group D02 represented by mul-
tiset

and objects A2 and A7 form group D03 represented by
multiset

The suggested indices of dissimilarity (23) and sim-
ilarity (24) between multi-attribute objects were used
in the methods of ordering ARAMIS (Aggregation
and Ranking of Alternatives nearby Multi-attribute
Ideal Situations), cluster analysis CLAVA-HI (CLus-
ter Analysis of Verbal Alternatives–HIerarchical) and
CLAVA-NI (CLuster Analysis of Verbal Alternatives–
Non-Ierarchical), and classification MASKA (Multi-
Attribute Consistent Classification of Alternatives) for
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objects with mismatched attribute values [13, 15].
Examples of practical application of these methods in
the problems of group multicriterion decision-making
were given in [14–17].

CONCLUSIONS

This paper describes new classes of spaces of finite,
bounded, and measurable sets and multisets and new
types of metrics that can be used in solving various
problems of classification, sorting, and ranking of
multi-attribute objects. Representation of multi-attri-
bute objects using multisets and application of new
types of indicators of proximity of objects make it pos-
sible to expand the range of problems, as well as to
more easily find solutions to known problems.

APPENDIX

Let us verify that the function  =
[m(AΔB)/m(A + B)]1/p defined on σ-algebra Sσ(Z) of
multisets is quasi-metric (symmetric almost every-
where) on space (Sσ(Z), m) of multisets with a strongly
σ-additive and completely σ-finite measure.

The validity and nonnegativity of function
 follow from the definition of measure m as a

real and nonnegative multiset function defined on σ-
algebra Sσ(Z) of multisets. The axiom of symmetry
(10) follows from the commutativity of the addition
operations A + B = B + A and symmetric difference
AΔB = BΔA of multisets.

Let us show using examples that the triangle
inequality (30) can be both satisfied and not for func-
tion . For , by the monotonicity
property of a measure of a multiset, we have m(C) ≤

 ≤ m(A), m(C) ≤  ≤ m(B). Then,
taking the inequality m(AΔB) ≤ m[(AΔC) + (BΔC)] =
m(AΔC) + m(CΔB) proved in [6, 7] into account we
obtain:

Therefore,

and

On the other hand, for arbitrary multisets A, B, and
C, from formulas (7)–(8), we have

Then for C = , taking into account the

inequality , m(B) ≤  ≤
m(A + B), which follows from (8), we obtain

It can be that .
By the identity property of the symmetric differ-

ence of multisets AΔB = ∅ for A = B. Then, m(AΔB) =
m(∅) = 0 and . At the same time, the
condition m(AΔB) = 0 in the general case does not
imply the equality of multisets A and B. Thus, only the

coincidence condition (40) holds for function
. Additionally, for multisets that differ by a

multiset of measure zero, condition m(AΔB) = 0
implies the m-equality of multisets A and B, and hence
the identity axiom (20) also holds. Thus, function

 is quasimetric and almost everywhere sym-
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metric on σ-algebra Sσ(Z) of measurable multisets
with a strongly σ-additive and completely σ-finite
measure.
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