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Abstract: The motion of fast electrons through the crystal during axial channeling could be regular
and chaotic. The dynamical chaos in quantum systems manifests itself in both statistical properties
of energy spectra and morphology of wave functions of the individual stationary states. In this
report, we investigate the axial channeling of high and low energy electrons and positrons near [100]
direction of a silicon crystal. This case is particularly interesting because of the fact that the chaotic
motion domain occupies only a small part of the phase space for the channeling electrons whereas
the motion of the channeling positrons is substantially chaotic for the almost all initial conditions.
The energy levels of transverse motion, as well as the wave functions of the stationary states, have
been computed numerically. The group theory methods had been used for classification of the
computed eigenfunctions and identification of the non-degenerate and doubly degenerate energy
levels. The channeling radiation spectrum for the low energy electrons has been also computed.
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1 Introduction

The fast charged particles incident onto the crystal under a small angle to any crystallographic axis
densely packed with atoms can perform the finite motion in the transverse plane known as the axial
channeling [1, 2]. The particle motion in this case could be described with a good accuracy as the
one in continuous potential of the atomic string. During motion in this potential the longitudinal
particle momentum p‖ is conserved, so the motion description is reduced to two-dimensional
problem of motion in the transversal plane. This motion can be substantially quantum [1].

From the viewpoint of the dynamical systems theory, the channeling particle’s motion could
be either regular or chaotic. The quantum chaos theory [3–6] predicts qualitative difference for
these alternatives. These differences have been demonstrated for the channeling electron in the
semiclassical domain [7], where the energy levels density is high. Here we consider the opposite
case when the total number of energy levels in the potential well is small.

2 Method and potential wells

The electron transversal motion in the atomic string continuous potential is described by the two-
dimensional Schrödinger equation with Hamiltonian

Ĥ = −(c2~2/2E‖)
[
(∂2/∂x2) + (∂2/∂y2)

]
+U(x, y) (2.1)

and the value E‖/c2 (here E‖ = (m2c4+ p2
‖
c2)1/2) instead of the particle mass [1]. The Hamiltonian

eigenfunctions as well as the transverse energy E⊥ eigenvalues are found numerically using the
so-called spectral method [8, 9]; see details in [7]. Here we consider the particle’s motion near
direction of the atomic string [100] of the Si crystal. The continuous potential could be represented
by the modified Lindhard potential [1]

U(1)(x, y) = −U0 ln
[
1 + βR2/(x2 + y2 + αR2)

]
, (2.2)
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whereU0 = 66.6 eV, α = 0.48, β = 1.5, R = 0.194 Å (Thomas-Fermi radius). These strings form in
the plane (100) the square lattice with the period a ≈ 1.92 Å. The additional contributions from the
eight closest neighboring strings lead to the following potential energy of the channeling electron:

U(−)(x, y) =
1∑

i=−1

1∑
j=−1

U(1)(x − ia, y − ja) + 9.8083 eV , (2.3)

where the constant is added to achieve zero potential in the corners of the elementary cell.
The positrons can perform axial channeling near [100] direction due to small potential well

formed near the center of the square cell with repulsive potentials −U(1) in the corners of the square:

U(+)(x, y) = −U(1)(x − a/2, y − a/2) −U(1)(x − a/2, y + a/2) (2.4)
−U(1)(x + a/2, y − a/2) −U(1)(x + a/2, y + a/2) − 7.9589 eV ,

where the constant is chosen to achieve zero potential in the center of the cell.
So, the electrons channeling along [100] direction move in a weakly disturbed, almost axially

symmetric potential. While their motion in this potential is regular for the most part, the dynamics
of channeling positrons is mostly chaotic, that can be shown using Poincaré section method [1].

3 Results and discussion

The potential (2.3) in which the electron channels is the potential of the single string (2.2) weakly
perturbed by the closest neighbors. The motion in the axially symmetric potential of the single
string is integrable: the polar coordinates r =

√
x2 + y2 and ϕ = arctan(y/x) separates, and the

Hamiltonian eigenfunctions split into the products of radial and angular parts. These eigenstates
can be classified by two quantum numbers, the radial nr and the orbital m. The m = 0 states are
non degenerated; the m , 0 states are twice degenerate. The eigenfunctions of the real Hamiltonian
without magnetic field and spin (like our (2.1)) always can be chosen real, hence we choose

ρnr ,m(r) cos(mϕ) (3.1)

and
ρnr ,m(r) sin(mϕ) (3.2)

as the basis functions for m , 0. The value m in this case manifests itself in the number of straight
nodal lines ψ(x, y) = 0 travelling through the origin of coordinates (while the value nr determines
the number of circular nodal lines with the center in the origin), see figure 1.

The axial symmetry violation due to the perturbation from the neighbors partially breaks the
degeneracy. The character of this partial splitting can be predicted using the group theory. The
potential (2.3) possesses the symmetry of the square thus isomorphic to dihedral group D4 (or
C4v). This group has four one-dimensional irreducible representations and one two-dimensional
one, denoted A1, A2, B1, B2, E [10]. It appears [11] that the states (3.1) with m = 4, 8, 12 . . . are
transformed according to A1 representation while the states (3.2) with the same m are transformed
according to A2 representation. Hence the perturbation shifts the energy eigenvalues in each of
these state pair by the different values that leads to the energy level splitting. The levels with
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m = 2, 6, 10 . . . are split in the same way: the states (3.1) are the basic ones for B1 representation
while the states (3.2) form one-dimensional bases for B2. The pairs of states (3.1)–(3.2) with odd
m make the bases of the two-dimensional representation E , transforming into each other under D4

group transformations, so the perturbation that possesses D4 symmetry conserves their degeneration.

Figure 1. (a) Plots of the transverse motion eigenfunctions of E‖ = 50MeV electron channeling along [100]
axis with their E⊥ eigenvalues (except the highest one), where black andwhite domains correspond to negative
and positive values of the function. Red lines mark the classical border of motion U(−)(x, y) = E⊥. (b) The
eigenfunction of the highest energy state E⊥ = −2.3957 eV of the electron channeling in the potential (2.3).
(c) The analogous eigenfunction in the potential of the single string (2.2). (d) The same as in (b), but
accounting the influence of 24 closest neighbors of the given string.

The physical origin of the level splitting lies in the follows. Thewave functions in the pairs (3.1)–
(3.2) differ from each other by the rotation on the angle π/2m. For even m, the finction (3.1) has
its antinodes (that means maximal probability density) in the domains where the potential energy
perturbation is maximal, while its counterpart (3.2) has its nodes in that places. So, the state (3.1)
gets larger addition to its energy than the state (3.2). Hence this addition is negativewe obtain sinking
of the (3.1) states comparing to the (3.2) ones, see figure 1. On the other hand, for the (3.1)–(3.2)
pairs with odd m the number of nodes and antinodes that fall on the perturbation with the symmetry
of the square does not change under rotation on the angle π/2m, so the level degeneration conserves.

Violation of the axial symmetry in the upper part of the potential well (where the perturbation
is maximal) manifests itself in the wave function structure: instead of the pure state |nr = 5,m = 0〉
for the highest level (figure 1 (c)) we see the superposition of the states with orbital momenta 0
and 4; this feature cannot be seen in the pattern of the nodal lines ψ(x, y) = 0. Note that the
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next neighbor atomic strings lead to negligible influence on the potential and hence the electron’s
motion. It is clearly seen while comparing the figures 1 (b) and (d), where the wave functions of
the same state computed using the potential (2.3) and the potential (2.3) plus the contribution of the
16 next neighboring strings, respectively, are presented. We see no changes in the wave function.

The scheme of the transverse motion energy levels for the channeling electrons is presented
in figure 2 (a). The electromagnetic transitions from upper to lower energy levels produce the
channeling radiation (CR). We calculate CR spectrum using dipole approximation formulae [12].
The contribution of the given transition |i〉 → | f 〉 to the radiation spectrum is taken into account if
the dipole moment of the transition exceeds some threshold, namely��ρ f i

�� = ����∫ ψ
( f )
⊥ (x, y)

∗ ρ ψ(i)⊥ (x, y) dxdy
���� ≥ 10−2 Å (3.3)

(where ρ = xex + yey is the radius vector in the (x, y) plane); remember that the elementary cell
size over which the integration is performed in (3.3) amounts a ≈ 1.92 Å. The introduction of the
threshold permits to exclude from the consideration the artifacts connected to numerical errors.
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Figure 2. (a) Levels of transverse motion energy of E‖ = 50MeV electrons channeling in (2.3) potential.
Red bars mark the levels populated in the case of zero incidence angle of the beam to [100] axis. The
transitions from them that meet the (3.3) criterion are shown by red and blue lines, the last ones are the
additional transitions possible due to violation of axial symmetry in the potential (2.3). (b) Corresponding
CR spectra of electrons in the potentials (2.2) (red line) and (2.3) (blue line).

The CR spectra in figure 2 (b) are computed for the simplest case of thin crystal (allowing to
neglect the kinetics of the levels population during the beam travel through the crystal [12]) and zero
angle of the beam incidence to [100] axis (hence only the states with m = 0 are initially populated
with electrons). CR spectrum is determined by the orbital momentum selection rule: in dipole
approximation only the transitions with ∆m = ±1 are permitted. The difference between CR spectra
in the potentials (2.2) and (2.3) is due to the fact outlined above: the highest initially populated
level in the potential of the single string (2.2) is the pure state |nr = 5,m = 0〉, so the transitions
only to the states with m = 1 are permitted. In contrary, the analogous state in the potential (2.3) is
the superposition of m = 0 and m = 4 states (see figure 1 (b)), so the additional transitions from the
upper state to the states with m = 3 and m = 5 become possible. These additional transitions are
marked in figure 2 (a) by blue lines; the probability of one among them, to the state |nr = 2,m = 3〉,
is enough to manifest itself in CR spectrum (the additional peak due to this transition is pointed
in figure 2 (b) by the arrow). So, violation of the axial symmetry of the potential that leads to
chaotization of the motion can manifest itself in additional peaks in CR spectrum.
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The potential well for the channeling positrons (2.4) could not be considered as a slightly
perturbed axially symmetric well. However, it also possesses the symmetry of the square, hence the
stationary states of the channeling positrons also can be classified via irreducible representations of
D4 group. The computed eigenfunctions of the channeling positron of the energy E‖ = 1GeV are
presented in figure 3 (for the twice degenerated states only one of the eigenfunctions is pictured;
the second one can get by rotation on 90 degrees). Remember the qualitative distinctions between
the wave functions in the regular and chaotic cases studied by various authors (see, e.g., [3–5, 7]):

(i) the nodal lines of the regular wave function exhibit crossings (in separable case) or tiny
quasi-crossings (in non-separable, but still regular case) forming checkerboard-like pattern;
those of the chaotic wave function form a sophisticated pattern of black and white “islands”,
the nodal lines quasi-crossings have significantly larger avoidance ranges;

(ii) near the classical turning line the nodal structure of the regular wave function immediately
switches to the straight nodal lines, in the outer domain going to infinity; for the chaotic wave
function an intermediate region exists outside the turning line, where some of the nodal lines
pinch-off, making transition to the classically forbidden regionmore graduate and not soman-
ifesting in the nodal structure. We see both of these features in the wave functions in figure 3.

Figure 3. The transverse motion eigenfunctions of E‖ = 1GeV positron channeling along [100] direction of
Si crystal. Red lines are the classical turning lines U(+)(x, y) = E⊥.

The manifestations of chaos in quantum systems are found also in the statistical properties
of their energy spectra. Consider the distances s between consequent levels in the spectrum of
E⊥ eigenvalues. The unfolding procedure [6] leads to dimensionless values of s with the average
inter-level spacing D = 1 for the E⊥ range under consideration. The quantum chaos theory predicts
(see, e.g., [3–6]) that the energy levels nearest-neighbor distribution of the chaotic system obeys
Wigner function

pW (s) = (πs/2) exp(−πs2/4) (3.4)

while the regular system — the exponential one (frequently referred as Poisson distribution)

pP(s) = exp(−s) . (3.5)
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Figure 4. Nearest-neighbor spacing distribution for the E‖ = 5GeV channeling electrons in the interval
−3 ≤ E⊥ ≤ −2 eV (a) and −5 ≤ E⊥ ≤ −3 eV (b) in comparison with Wigner (3.4) and Poisson (3.5)
distributions (solid and dashed lines, respectively), and for the channeling E‖ = 4GeV positrons (c).

The histograms for the type A1 level spacing of E‖ = 5GeV channeling electron are presented
in figure 4 for the intervals −3 ≤ E⊥ ≤ −2 eV (a) and −5 ≤ E⊥ ≤ −3 eV (b). We see that in the
first case the distribution is close to Wigner one (that is confirmed by the χ2 values calculated for
both hypotheses, Wigner and Poisson). This result is in agreement with the fact that the domain
of chaotic dynamics of the system occupies substantial part of the phase space, ∼ 40% (estimated
using Poincaré sections). The level spacing distribution in the second case is closer to (3.5) rather
than to (3.4) that is due to mainly regular dynamics of the channeling electron in this E⊥ range
(regular trajectories occupy ∼ 90% of the phase space). The A1 level spacing of E‖ = 4GeV
positrons (which motion is mostly chaotic) is also obeys Wigner distribution (figure 4 (c)).

4 Conclusion

The channeling of electrons and positrons near [100] direction in Si crystal is considered from the
quantum-mechanical viewpoint. The energy levels and wave functions of the particle’s transverse
motion in (100) plane as well as radiation transitions have been computed numerically. We see
differences between motion and radiation characteristics in regular and chaotic cases. So, quantum
chaos can manifest itself not only in semiclassical case (where the density of energy levels is high),
but also in the case of small total number of energy levels.
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