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Abstract: The article considers a mathematical model of the coordination number, which allows obtaining an equation for multi 

component spherical packing in the entire range of its change. The resulting model can be used in both 2-d and 3-d spaces. The 

concept of the coordination index is introduced as a function of the inter-particle distance related to a single particle located near 

the central particle. The model provides unambiguous compliance between the simulated and calculated data on the coordination 

numbers of the spherical packing. 
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I. INTRODUCTION 

The theory of error correction codes has a number of 

natural analogs one of which is the theory of packing of 

spheres in Euclidean space. The study of spherical packing 

allows to consider the methods used in coding theory more 

deeply. Spherical packings like close-packed particle 

systems have been the subject of considerable attention for 

many decades mainly because of their role in understanding 

the nature of dispersed materials [1,2]. The structure of 

spherical packing is characterized by a number of physical 

parameters where the main ones are the packing density and 

coordination number. The coordination number is one of 

the most important parameters used for describing the 

spatial structure of random spherical packing [3]. The 

coordination number can be defined as the number of 

nearest neighbors in a close-packed system of particles 

located around the selected particle which allows estimating 

the degree of the proximity of particles to each other [4]. In 

the case of the definition of the coordination number 

concept it is necessary to consider the positional 

relationship relative to the central particle individually for 

each particle. Therefore it should be determined by 

analyzing the inter-particle distances. 

In previous years considerable efforts were made to clarify 

the nature of the coordination number. This was mainly 

carried out through the use of three approaches: 

experimental methods [5, 6], methods of mathematical [7, 

8] and computer simulation [9–11]. For the first time the 

problem of a theoretical estimate of a coordination number 

was considered in the work of F. Frank and J. Casper [12]. 

To determine the coordination number they used the 
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information on the number of planes formed on the Voronoi 

polyhedron. This approach assumed that all particles have 

the identical volume and all the planes in the polyhedron 

are equal. A few years later R. Hoppe [13] proposed 

another version such as lines connecting the selected 

particle with all its neighbors are drawn from the center of 

the polyhedron and secants of the plane are drawn at the 

points of the contact of the base particle. To find the 

contributions of all particles to the coordination number it is 

necessary to divide the area of all planes into the nearest 

(largest) plane. 

A completely different approach belongs to J. 

Witing [14]. He accepted the contribution of an individual 

contacting particle to the coordination number equal to 1, at 

the double distance the contribution was already taken to be 

zero and in intermediate cases the linear interpolation was 

performed. In 1977, S. Batsanov and independently of him 

G. Brunner [15, 16] proposed to take into account the 

contribution of the surrounding particles to the coordination 

number in inverse proportion to the distances between the 

central particle and the neighboring particles. In 2008 to 

estimate the coordination number of a single-component 

spherical packing V. Bondarev and others [17] suggested 

using the empirical equation based on the exponential 

dependence of the coordination number on the inter-particle 

distance 

 

Z =  exp −γ (ri σ) 6
− 1   ,m

i=1  (1)  (1) 

 

where γ is a constant; m is the total number of particles in 

the first and second coordination spheres; ri  is the 

interparticle distance between the central and i-th particle; σ 

is the particle diameter. 

In 2015 it was revealed [18] that the coordination number is 

related to the density of regular spherical packing by the 

quadratic dependence 

Z(n)=nmax [(
2n

π
η(n))2 − 1] + 2n , 

 

where η is the packing density; n is the dimension of space; 

nmax  is the maximum dimension of the physical space 

(nmax = 6). 

The presented formula (2) of the dependence of 

the coordination number on the packing density and the 

dimension of space in regular spherical packing is deeply 

connected with the estimation of the degree of particles' 

proximity. In this article we are going to obtain the 

coordination number equation following the theoretical 

formalism which in its turn is based on the hypothesis of 

the location of the system particles in six-dimensional 

space. However the causality inherent in this equation 

shows that the dependent quantity here is the packing 

density which values can be determined on the data basis on 

the coordination number and the dimension of the space.  

As it can be seen from the above mentioned, the 

structural characteristics of spherical packing are currently 

well studied but so far there is no theoretical basis for 

calculating the parameters of spherical packing. Especially 

there are few works devoted to the coordination number 

due to the complexity and uncertainty of the results of 

experimental measurements of this characteristic. For this 

reason, due to the necessity of eliminating such a gap the 

purpose of the presented research became the definition of 

the mathematical model for estimating the coordination 

number of spherical packing. 

 

II. EXPERIMENTAL SIMULATION OF 

COORDINATION NUMBER 

2.1  Formulation of the problem 

To build a mathematical model of the coordination 

number of the spherical packing we will at first consider the 

geometric side of this problem and for this purpose we will 

impose a number of restrictions.  

First, we assume that the dimension of the space in 

which the spherical packing is located is defined as a six-

dimensional static space [3].  

Secondly, we will put that the considered spherical 

packing is close-packed particle systems. In other words, in 

the area occupied by this packing there are no emptiness 

same or more than a size, as the size of particles of the 

smallest component of system. 

Thirdly, let us assume that it is possible to consider 

the coordination number as the sum of the contributions of 

all the particle neighbors and each of these contributions is 

evaluated independently from each other [17].  

Based on these limitations we will carry out the 

formulation of the problem. Suppose we have a multi-

component spherical packing in which all particles are 

spherical and have different sizes. Let us choose some 

particle inside the packing which we will hereafter call the 

central particle. Also let m neighboring particles be placed 

near the central particle at unique (not equal) distances. 

Let us single out inside the spherical packing a 

separate cluster consisting of four particles contacting with 

each other (Fig. 1a). We will consider the particle with 

number 1 as a central one, the particle with number 2 as 

coordinated (connected) with the central particle and the 

particles 3 and 4 will be as particles-neighbors. In this case 

it is necessary to choose the assessment of the degree of 

participation of the coordinated particle in determining the 

coordination number of the central particle as the main goal 

of this work. 

 

It is necessary to consider the process of changing the 

distance between the central and coordinated particles to 

achieve this goal. If we change the distance between the 

centers of the considering particles, this will lead to a 

change in the region occupied by the cluster. At the same 

time there will also be a displacement of neighboring 

particles which in accordance with the requirement of 

having a close-packed system must contact necessarily with 

the central and coordinated particles. When the distance 

between the centers of the central and coordinated particles 

is changed, the void area for each of the particles-neighbors 

of the central particle will be also changed. 
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Figure 1: Image of a 2-D cluster of spherical packing: 

a) a single-component system; b) a multi-component 

system 

 

Basing on the presented assumptions the problem 

can be formulated as follows. It is necessary to find an 

expression for estimating the coordination number based on 

such parameters as the inter-particle distance and void area 

of the selected cluster taking into account the contributions 

of each particles-neighbors of the central particle in the 

spherical packing. Now when the problem is defined 

unambiguously, we proceed to simulating the coordination 

number of spherical packing based on a formalized 

approach which can lead to a deeper understanding of the 

physical nature of the coordination number. 

 

2.2 Coordination index 

To build a mathematical model of the coordination 

number we will introduce additionally a new function that 

allows us to estimate the contribution of each individual 

particle to the coordination number of the central particle. 

We assign this function the name coordination 

index 𝑓𝑐 . This index will be a criterion of pair-wise 

coordination for assessing the location of the spherical 

packing particles relative to each other. The maximum 

value of the coordination index is taken equal to unity in the 

case of direct contact of the particle-neighbor and the 

central particle. The lower limit is considered to be 

consistent with the minimum zero value which is practically 

achieved at an inter-particle distance greater than 

2 2𝑟1(𝑟1is the radius of the central particle).Therefore, the 

limits of the change in the coordination index can be 

represented as non-equality:0 ≤ 𝑓𝑐 ≤ 1.In this case the 

coordination number Z can be determined by summing the 

coordination indexes of all the particles-neighbors located 

near the central particle 

𝑍 =  𝑓𝑐𝑖  ,

𝑚

𝑖=1

 

where m is the number of neighboring particles in the first 

and second coordination spheres. We summed up the 

indexes in equation (3) supposing that the coordination 

indexes of individual particles-neighbors of the central 

particle are independent of each other.  

We investigate a contribution to coordination number of the 

central particle of a particle, separate; coordinate with her, 

who is her close neighbor. Let's carry out modeling of an 

index of coordination of particles assuming that two more 

other next particles at the same time are in continuous 

contact both with central, and with a coordinate particle 

(Fig. 1b). 

Based on the previously considered conditions, as the initial 

parameters responsible for the change in the coordination 

index we take 𝑊0 as the initial volume occupied by the 

cluster in 6-D space and the values of the radii of spherical 

particles (i=1, …, 4). 

For estimating the change in the void area we shift the 

center of the coordinated particle by the quantity Δ𝑟 relative 

to the center of the central particle. Then the volume of the 

6-D space for the considering cluster will be changed by the 

quantityΔ𝑊. At the same time the void area formed within 

this cluster which at this stage we consider as a two-

dimensional object will be also changed. In this case the 

input data are 𝑊as the volume of 6-D space; 𝑆𝑣as the void 

area related to the central and coordinated particles and 

𝑟12as the inter-particle distance between them. We will also 

assume that the coordination index depends on the size of 

the initial void area 𝑆0 and the dimension 𝑛 of the 

considering space. Therefore, the coordination index can be 

represented as a function: 

 
𝑓𝑐 = 𝐹(𝑊, 𝑆𝑣 , 𝑊0, 𝑆0, 𝑛, 𝑟12) 

 

We give the derivation of the coordination index equation 

below which ideology coincides with the course of 

determining the equation for packing density in [11]. The 

limits of the change in the coordination index here can be 

given from a value being equal to one (contacting particles) 

to some arbitrary value 𝑓𝑐  and for a volume of 6-D space 

from the initial 𝑊0 which is achieved with contacting 

particles to a volume 𝑊 where the coordination index is 𝑓𝑐 . 

The remaining parameters in the equation we consider to be 

independent of the volume of 6-D space. 

To write the differential equation we assume that the 

infinitesimal changes in the absolute values of the 

coordination index ∆𝑓𝑐  and the relative volume increments 

Δ𝑊 of the six-dimensional space are directly proportional. 

We also assume that small changes in the absolute values of 

the coordination index ∆𝑓𝑐  are proportional to the 

coordination index 𝑓𝑐  itself and to the relative void area 𝑆𝑣 . 

This statement can be written as a differential equation: 

 

𝑑𝑓𝑐 = −𝐴
𝑓𝑐𝑆𝑣𝜔(𝑛)

𝑆0𝑊0
𝑑𝑊 . 

 

Where A is a coefficient of proportionality; 𝜔(𝑛) is a 

function that takes into account the effect of dimension 𝑛 of 

the considered space on coordination index 𝑓𝑐 . We integrate 

this equation within the following frames: for the volume 

from the minimum value of 𝑊0 to some current value of 𝑊 

and for the coordination index from the maximum value 

𝑓𝑐 𝑚𝑎𝑥 = 1 to the current value 𝑓𝑐 . In this case the solution 

of the differential equation (4) can be represented as 

 𝑓𝑐 = exp⁡[−𝐴
𝑆𝑣ω(𝑛)

𝑆0𝑊0

 𝑊 − 𝑊0 ], (5) 
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According to [1] the size of the area W occupied by 

particles in six-dimensional space can be expressed in terms 

of the square of the volume V of the three-dimensional 

space 𝑊 = 𝑉2 that allows writing 𝑊 =
𝜋2

4
𝑟12

6 . Entering the 

expression for 𝑊0 in a similar way through the radii of the 

central 𝑟1 and coordinated 𝑟2 particles, equation (5) can be 

converted to the following form 

 𝑓𝑐 = exp⁡[−𝐴
𝑆𝑣ω(𝑛)

𝑆0

 (𝑟12  𝑟1 + 𝑟2 ) 6
− 1 ] (6) 

2.3 The area of the voids and the dimension of the space  

We calculate the void area 𝑆𝑣  on the basis of the 

expression for the area of the quadrangle 𝑂1𝑂4𝑂2𝑂3  (Fig. 

1b) excluding the area of the sectors included into the 

considered space 

 𝑆𝑣 =
𝑘

2
 𝑟12𝑟34 −

𝜋

180°
 ∠𝑂𝑖𝑟𝑖

2

4

𝑖=1

  (7) 

where ∠𝑂𝑖  is the internal angles of the polygon bounding 

the void region of the cluster. The constant k in the formula 

(7) determines how much of the area of the cluster voids 

refers only to the central and coordinated particles. 

 𝑘 =  𝑟𝑖
2

2

𝑖=1

 𝑟𝑖
2

4

𝑖=1

  (8) 

To obtain more accurate values equation (6) for the 

coordination index must be supplemented with a semi-

empirical expression that takes into account the dependence 

of the coordination index on the dimension of the space 

obtained with the help of regression analysis methods 

 ω 𝑛 = α − β(𝑛𝑚𝑎𝑥 − 2𝑛) (9) 

The approaches used in considering 3-D packings 

also allow us to consider the dependence on the dimension 

of space that gives the following values of coefficients for a 

linear equation on the basis of known values of 

coordination numbers:α=1.01andβ = 0.025. 

 

III. RESULTS AND DISCUSSION 

The obtained theoretical results were then compared 

with known calculation data for regular spherical packings. 

We would like to note that the coordination numbers for 

regular 2-D packing were determined by displacing the 

layers taking into account the division of their height into 

several parts. Here we also took into account the fact that 

having determined the packing densities, it is possible then 

to calculate their coordination numbers by the formula (1). 

 

To estimate the coordination number we define a 

number of additional calculation data for the two-

dimensional case on the density of regular packing and the 

distance between the central and coordinated particles (Fig. 

1a).In addition to the known data on the square packing: η 

= 0.7854; Z = 4; 𝑅 = 2 2𝑟1 (R is the radius of the second 

coordination sphere); ℎ = 2𝑟1 as well as hexagonal 

packing: η = 0.9069; Z = 6; 𝑅 = 2 3𝑟1; ℎ =  3𝑟1 it is 

necessary to have data for three more additional regular 

packings. Therefore similar data were calculated for various 

values of coordination numbers: Z = 4.5; 5.0; 5.5 using the 

formula (2). The coefficient of proportionality A was 

accepted equal 0.7575. Also, in case of consideration of 

mono-systems of particles to which regular packings belong 

small changes of the void area when calculating was not 

considered. The results of the calculations are presented in 

Table 1. 

 

Table 1: – The results of the calculation of the 

coordination number (CN) of regular spherical packings 

 

Packing 

density 

Newton's 

number 

Second coordination area 
Theoretic

al CN 

Calcul

ated 

CN 

Ratio 

error, %  Number of 

particles 

Sphere 

radius, R 

Space dimensionn=2  

0.785 4 4 2.828 4.0 4.025 0.62 

0.818 4 2 2.404 4.5 4.461 0.88 

0.848 4 2 2.231 5.0 5.020 0.41 

0.878 4 2 2.103 5.5 5.549 0.89 

0.907 6 6 3.464 6.0 6.0 0.0 

Space dimensionn=3 

0.524 6 12 2.828 6.0 6.057 0.94 

0.605 8 6 2.828 8.0 8.028 0.35 

0.680 8 6 2.309 10.125 10.103 0.22 

0.698 10 4 2.449 10.667 10.65 0.16 

0.741 12 12 3.464 12.0 12.0 0.0 

 

As we can see in Table 1, the ratio error in the 

calculation of the coordination number is the order value of 

tenths of a percent. Thus, the considered model of 

coordination number reproduces well the data on the 

determination of the coordination number. The coordination 

number equation for multi-component spherical packing 

can be used for describing the state of the particles and the 

numerical estimate of the coordination number now reduces 

only to finding the inter-particle distances. 

 

IV. CONCLUSION 

Our research allowed us to carry out a theoretical study of 

the coordination number of the spherical packing. In the 

process of research we found the model approximations in 

2-D and 3-D spaces for the coordination number of 

spherical packing. Our theoretical results are in excellent 

agreement with the calculation data for regular structures 

and they can also be used in considering multi-component 

random spherical packings. 

The introduced concept of the coordination index makes it 

possible to calculate analytically the coordination number 

based on the consideration of the pair-wise coordination of 

particles. In our research we showed that the coordination 

index is a function that depends uniquely on the area of the 

cluster voids, the dimension of the considered space and the 

quantity of the inter-particle distance. The reliability of this 
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equation is confirmed by the results of computer simulation 

and known experimental data. 

In conclusion we should emphasize that a complete 

understanding of the coordination number requires further 

theoretical studies. The concept of the coordination number 

in its basic sense also constitutes the basis for estimating 

the local densities of any systems of particles. Using this 

concept, everyone can not only determine the structural 

features of close-packed systems but also linear densities, 

for example, the number of branches on a tree trunk and 

also use the concept of coordination number to estimate 

local densities of celestial bodies such as planets, 

constellations, etc. 
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