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Abstract—We consider initial value problems for a number of hyperbolic equations with
a power-law degeneracy and with operator coefficients in a Banach space and establish suf-
ficient conditions for the unique solvability of these problems in terms of the coefficients of the
equation, the degeneracy order, and the initial elements.
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INTRODUCTION

Differential equations in which the coefficient of the leading derivative has zeros do not fit in the
framework of the standard theory of differential equations and have been attracting the interest of
a broad research community for a long time (see the monographs [1–3] and the bibliography therein).
Although some types of such equations have been comprehensively studied, there are topics (in
particular, the construction of closed-form expressions for solutions) requiring further research in
the case of second-order equations with operator coefficients (abstract equations) degenerating into
first-order equations.

In the present paper, we consider equations in a Banach space in the hyperbolic case. The
Cauchy problem for a differential equation of the form u′′(t) − tαAu(t) = 0, α > 0, where A = A2

0
and the operator A0 is the generator of a C0 group, was studied earlier in [4]; the case of a Hilbert
space was considered in [5]. The Cauchy problem with the generator of an operator cosine function
for a weakly degenerating differential equation of the form tγu′′(t) − Au(t) = f(t), 0 < γ < 2,
was considered in [6] (as to the terminology, see, e.g., the monograph [7]). The study of both
degenerating equations was carried out by reducing them to an Euler–Poisson–Darboux equation.

We consider a more general form of the differential equation and the operator coefficient (which,
in addition, has a variable component) than in [4–6]. The research is also conducted by reduction to
a Euler–Poisson–Darboux equation, whereby we need to use the operator Bessel function introduced
by the present author [8] and studied in [8, 9].

Let us describe the class of operatorsA to be dealt with below when considering various equations.
The papers [8, 9] studied the well-posed solvability of the Cauchy problem

v′′(t) +
k

t
v′(t) = Av(t), t > 0, (1)

v(0) = u0, v′(0) = 0 (2)

with k > 0 for the Euler–Poisson–Darboux equation with an operator coefficient A in the hyperbolic
case.

A necessary and sufficient solvability condition is stated in [8] in terms of estimates for the
norm of the resolvent (λI −A)−1 and its weighted derivatives, while the paper [9], unlike [8], states
a criterion for the uniform well-posedness of this problem in terms of a fractional power of the
resolvent and its nonweighted derivatives.

We denote the class of operators A for which the Cauchy problem (1), (2) is uniformly well
posed by Gk and the corresponding resolving operator (which will be called the Bessel operator
function) by Yk(t); i.e., v(t) = Yk(t)u0. Further, we denote the set of generators of the cosine
operator function C(t) by G0 (G0 ⊂ Gk at k > 0) and write Y0(t) = C(t). The class Gk will
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SOLVABILITY OF DEGENERATING HYPERBOLIC DIFFERENTIAL EQUATIONS 61

be referred to as the well-posed solvability class and the number k, as its index . Examples of
operators A ∈ Gk and the Bessel operator functions Yk(t) generated by them can be found in [9].
In particular, if A ∈ G0 ⊂ Gk, k > 0, then

Yk(t) =
2Γ(k/2 + 1/2)

Γ(1/2)Γ(k/2)

1∫
0

(1− s2)k/2−1C(ts) ds, (3)

where Γ(·) is the Euler gamma function.

1. WEAKLY DEGENERATING DIFFERENTIAL EQUATION
WITH POWER-LAW DEGENERACY

For t ≥ 0, consider the weakly degenerating differential equation

tγu′′(t) + btγ−1u′(t) = (A+ tβB)u(t) (4)

with operator coefficients in a Banach space E, where 0 < γ < 2, b ∈ R, β ≥ 0, A is a closed
unbounded operator, and B ∈ L(E) is a bounded operator. The inclusion γ ∈ (0, 2) implies weak
degeneracy as opposed to strong degeneracy , where γ ≥ 2, which will also be considered in the
present paper.

A solution of Eq. (4) is understood to be a twice continuously differentiable function u(t)
on (0,+∞) that belongs to the domain D(A) of the operator A and satisfies the equation for
all t > 0. We define the solutions of all the equations considered in the present paper in a similar
way.

The inhomogeneous equation (4) in the scalar case with γ = 1, A = λ > 0, and B = 0 was
analyzed by methods of semigroup theory in the paper [10] when studying stochastic processes that
are the limits of sequences of random walks.

The change of the independent variable t = (τ/ν)ν , ν = 2/(2− γ) and of the unknown function
u(t) = u((τ/ν)ν) = w(τ), with allowance for the obvious relations

u′(t) =

(
τ

ν

)1−ν

w′(τ), u′′(t) =

(
τ

ν

)2(1−ν)(
w′′(τ) +

1− ν
τ

w′(τ)

)
, (5)

reduces the weakly degenerating equation (4) to the Euler–Poisson–Darboux equation

w′′(τ) +
bν − ν + 1

τ
w′(τ) =

(
A+

(
τ

ν

)νβ
B

)
w(τ), τ > 0. (6)

The well-posed statement of initial conditions for the Euler–Poisson–Darboux equation (6) de-
pends on the sign of the parameter bν − ν + 1. If bν − ν + 1 ≥ 0, then the initial conditions have
the form

w(0) = u0, w′(0) = 0 (7)

just as for Eq. (1).
If bν − ν + 1 < 0, then one must pose the weighted initial condition (see [11])

w(0) = 0, lim
τ→0+

τ bν−ν+1w′(τ) = u1. (8)

A more general statement of the initial conditions is possible as well (see [12]), but it requires
an additional smoothness of the initial elements, and we will not consider it here.

Of course, the solvability of the initial value problem for Eq. (6) also depends on the opera-
tor A+ (τ/ν)νβB. We assume that the operator A belongs to a class Gk for some k > 0, which is
broader than in the paper [6] cited in the Introduction (Gk ⊃ G0).

Let A ∈ Gk, k > 0. The question as to whether the perturbed operator A + B, where B is
a bounded operator, belongs to the classGk was studied in [13], and the question as to whetherA+B,
where B ∈ Gm, m ≥ 0, is an unbounded operator, belongs to some well-posedness class was studied
in [14]. These perturbation results considerably broaden the class of operators generating Bessel
operator functions. In the present paper, we consider the perturbation of an operator A ∈ Gk, k > 0,
by a variable operator of the form B(τ) = (τ/ν)νβB.
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62 GLUSHAK

Theorem 1. Let k > 0, let A ∈ Gk , let B(t) = (t/ν)νβB , νβ ≥ 0, and let Q(t, s), t ≥ s > 0, be
a continuous operator satisfying the operator differential equation

∂2Q(t, s)

∂t2
− k2 − 2k

4t2
Q(t, s)−B(t)Q(t, s) =

∂2Q(t, s)

∂s2
− k2 − 2k

4s2
Q(t, s) (9)

and the boundary conditions

dQ(t, t)

dt
=

1

2
B(t), lim

s→0+
sk/2−1Q(t, s) = 0. (10)

Then the function

v(t) = Yk(t)u0 + t−k/2
t∫

0

sk/2Q(t, s)Yk(s)u0 ds (11)

is the unique solution of the equation

v′′(t) +
k

t
v′(t) =

(
A+B(t)

)
v(t) (12)

with conditions (2).
Proof. For the first term in the representation (11), by the definition of the Bessel operator

function Yk(t), one has the relation

Y ′′k (t)u0 +
k

t
Y ′k(t)u0 = AYk(t)u0; (13)

here and in what follows, we will use the notation

Y ′k(t)u0 =
(
Yk(t)u0

)′
.

Denote the second term in the representation (11) by ϕ(t); i.e.,

ϕ(t) = t−k/2
t∫

0

sk/2Q(t, s)Yk(s)u0 ds. (14)

Differentiating identity (14) twice, we obtain

ϕ′(t) = t−k/2
t∫

0

sk/2
(
∂Q(t, s)

∂t
− k

2t
Q(t, s)

)
Yk(s)u0 ds+Q(t, t)Yk(t)u0,

ϕ′′(t) = t−k/2
t∫

0

sk/2
(
∂2Q(t, s)

∂t2
− k

t

∂Q(t, s)

∂t
+

2k + k2

4t2
Q(t, s)

)
Yk(s)u0 ds

+

(
∂Q(t, s)

∂t

∣∣∣∣
s=t

+
dQ(t, t)

dt
− k

2t
Q(t, t)

)
Yk(t)u0 +Q(t, t)Y ′k(t)u0,

and therefore,

ϕ′′(t) +
k

t
ϕ′(t) = t−k/2

t∫
0

sk/2
(
∂2Q(t, s)

∂t2
− k2 − 2k

4t2
Q(t, s)

)
Yk(s)u0 ds

+

(
∂Q(t, s)

∂t

∣∣∣∣
s=t

+
dQ(t, t)

dt
+
k

2t
Q(t, t)

)
Yk(t)u0 +Q(t, t)Y ′k(t)u0.

(15)
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We denote the integral in relation (15) by ψ(t) and simplify it by using Eq. (9) and the boundary
condition (10). After integrating by parts twice, we obtain

ψ(t) =

t∫
0

sk/2
(
∂2Q(t, s)

∂t2
− k2 − 2k

4t2
Q(t, s)

)
Yk(s)u0 ds

=

t∫
0

sk/2
∂2Q(t, s)

∂s2
Yk(s)u0 ds+

t∫
0

sk/2
(
B(t)− k2 − 2k

4s2
I

)
Q(t, s)Yk(s)u0 ds

= tk/2
∂Q(t, s)

∂s

∣∣∣∣
s=t

Yk(t)u0 −
t∫

0

∂Q(t, s)

∂s

(
k

2
sk/2−1Yk(s) + sk/2Y ′k(s)

)
u0 ds

+

t∫
0

sk/2
(
B(t)− k2 − 2k

4s2
I

)
Q(t, s)Yk(s)u0 ds

= tk/2
∂Q(t, s)

∂s

∣∣∣∣
s=t

Yk(t)u0 −
ktk/2−1

2
Q(t, t)Yk(t)u0 − tk/2Q(t, t)Y ′k(t)u0

+

t∫
0

sk/2Q(t, s)

(
Y ′′k (s) +

k

s
Y ′k(s)

)
u0 ds+

t∫
0

sk/2B(t)Q(t, s)Yk(s)u0 ds.

(16)

Replacing the integral in (15) with its representation (16), by virtue of the boundary condi-
tion (10) we arrive at the relation

ϕ′′(t) +
k

t
ϕ′(t) = t−k/2(A+B(t))

t∫
0

sk/2Q(t, s)Yk(s)u0 ds

+

(
∂Q(t, s)

∂s

∣∣∣∣
s=t

+
∂Q(t, s)

∂t

∣∣∣∣
s=t

+
dQ(t, t)

dt

)
Yk(t)u0

=
(
A+B(t)

)
ϕ(t) + 2

dQ(t, t)

dt
Yk(t)u0 =

(
A+B(t)

)
ϕ(t) +B(t)Yk(t)u0.

(17)

In view of relations (13)–(17), we eventually obtain

v′′(t) +
k

t
v′(t) = AYk(t)u0 +

(
A+B(t)

)
ϕ(t) +B(t)Yk(t)u0 =

(
A+B(t)

)
v(t).

Thus, the function v(t) defined in (11), which, for convenience, will be denoted by

v(t) = Ỹk(t)u0 ≡ Yk(t)u0 + t−k/2
t∫

0

sk/2Q(t, s)Yk(s)u0 ds (18)

in what follows, is a solution of Eq. (12).
One can readily verify that the function v(t) satisfies conditions (2). To this end, write the

function v(t) in the form

v(t) = Yk(t)u0 + t

1∫
0

ξk/2Q(t, tξ)Yk(tξ)u0 dξ
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and take into account the properties Yk(0) = I and Y ′k(0) = 0 of the Bessel operator function as
well as the relation

lim
t→0+

Q(t, tξ) = 0,

which follows from Eq. (9).
The uniqueness of the solution of problem (9), (10) is proved by contradiction. Let v1(t) and v2(t)

be two solutions of problem (9), (10). Consider the function

V (t, s) = f
(
Ỹk(s)

(
v1(t)− v2(t)

))
of two variables, where f ∈ E∗ (E∗ is the dual space of E) and t, s ≥ 0. Obviously, this function
satisfies the equation

∂2V

∂t2
+
k

t

∂V

∂t
=
∂2V

∂s2
+
k

s

∂V

∂s
, t, s > 0,

and the initial conditions

V (0, s) =
∂V (0, s)

∂t
= 0.

This problem for a partial differential equation is reduced by the change of variables (see [15,
Sec. 5, item 3])

t1 = (t+ s)2/4, s1 = (t− s)2/4

to a problem for which the uniqueness of a solution in the class of functions twice continuously
differentiable for t, s ≥ 0 has been established in [15, Sec. 5, item 2]). Moreover, the statement on
the uniqueness is also contained in Theorem 6.1 in the paper [16], which even treats a more general
equation.

The explicit formula obtained in the paper [15] for the solution of the above problem implies the
identity V (t, s) ≡ 0. Since f ∈ E∗ is arbitrary, by setting s = 0 we obtain v1(t) ≡ v2(t), and the
uniqueness of solution is thus established. The proof of the theorem is complete.

As was proved in Theorem 1, the solvability of the initial value problem for Eq. (12) depends on
the solvability of the boundary value problem (9), (10) for an operator differential equation, which
has essentially been established in the paper [17].

Theorem 2. The operator differential equation (9) with the boundary conditions (10) has a so-
lution that can be obtained by the successive approximation method.

For B ∈ R, the solvability of the boundary value problem for the scalar equation (9) was estab-
lished in [17]. One can readily verify that replacing the coefficient B ∈ R with a continuous operator
coefficient B(t) = (t/ν)νβB does not invalidate the reasoning in Secs. 2, 3 in the paper [17]. Note
also that the case of k = 0 was considered in the paper [18].

Let us also point out that if β = 0, k = 2n, and n ∈ N, then, by Theorem 3 in [13], the
function Q(t, s) can be written in closed form as

Q(t, s) =
snB

2n+1n!tn−1

(
1

s

d

ds

)n(
(s2 − t2)n1F2

(
1;n+ 1, 2;

t2 − s2

4
B

))
,

where 1F2(·) is the generalized hypergeometric function.
Having established the results on the solvability of the initial value problem for the perturbed

Euler–Poisson–Darboux equation (12), let us now state results on the solvability of initial value
problems for the weakly degenerating equation (4).

Let bν−ν+1 ≥ 0 and ν = 2/(2−γ), or, equivalently, 2b ≥ γ. Returning to the original variable t
and the unknown function u(t), we conclude that Eq. (6) is transformed into Eq. (4) and the initial
conditions (7), by virtue of relations (5), are transformed into the conditions

u(0) = u0, lim
t→0+

t1−1/νu′(t) = 0. (19)
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Theorems 1 and 2 imply the following assertion on the solvability of the initial value prob-
lem (4), (19).

Theorem 3. Let 0 < γ < 2, 2b ≥ γ , β ≥ 0, A ∈ G(2b−γ)/(2−γ) , B ∈ L(E), and u0 ∈ D(A). Then
the function u(t) = Ỹ(2b−γ)/(2−γ)(νt

1/ν)u0 , where ν = 2/(2 − γ) and the function Ỹ(2b−γ)/(2−γ)(·) is
defined by relation (18), is the unique solution of Eq. (4) with the initial conditions (19).

Now let bν−ν+1 < 0 or 2b < γ. In this case, for Eq. (6) one should pose the initial conditions (8),
which for the original function u(t) become

u(0) = 0, νbν−ν+1 lim
t→0+

tbu′(t) = u1. (20)

Considering the results in [11] on the solvability of the weighted Cauchy problem for the Euler–
Poisson–Darboux equation, we arrive at the following assertion.

Theorem 4. Let 0 < γ < 2, 2b < γ , β ≥ 0, A ∈ G(4−b−γ)/(2−γ) , B ∈ L(E), and u1 ∈ D(A).
Then the function

u(t) =
νν−bν−1t1−b

1− b
Ỹ(4−b−γ)/(2−γ)(νt

1/ν)u1,

where ν = 2/(2 − γ) and the function Ỹ(4−b−γ)/(2−γ)(·) is defined by relation (18), is the unique
solution of Eq. (4) with the initial conditions (20).

In particular, for b = 0 and B = 0 with an operator A ∈ Gν+1 in the broader set Gν+1 ⊃ G0

than in [6], the solution of problem (4), (20) has the form

u(t) = νν−1tYν+1(νt1/ν)u1.

The assertions in Theorems 3 and 4 also obviously hold for γ = 0, because Eq. (4) is already
an Euler–Poisson–Darboux equation in this case. These theorems not only specify the statement of
initial conditions and prove the unique solvability of the corresponding initial problems for Eq. (4)
but also establish a connection between the degeneracy order γ, the coefficient b multiplying the
first derivative u′(t), and the set of operators A forming the well-posed solvability class.

An elementary analysis of the assertions in Theorem 3 leads to the following conclusions.
If 0 ≤ γ ≤ 2b and 0 ≤ b < 1, then the index of the well-posed solvability class with a fixed b
decreases in the variable γ from b to 0, with the well-posed solvability class itself narrowed down
from Gb to G0. If 0 ≤ γ < 2 and b = 1, then the well-posed solvability class is one and the same for
all γ and coincides with G1. If 0 ≤ γ < 2 and b > 1, then the index of the well-posed solvability class
increases in the variable γ from b to +∞. Under the condition 2b = γ, 0 ≤ γ < 2, the well-posed
solvability class is one and the same for all γ and coincides with G0.

For a fixed γ, 0 ≤ γ < 2, the index of the well-posed solvability class increases in the variable b
from γ/2 to +∞.

Under the conditions 2b = γ, 0 ≤ γ < 2, and B = 0, the well-posed solvability class is one and
the same for all γ and coincides with G0. The limit case of b = γ = 0 corresponds to the abstract
wave equation

u′′(t) = Au(t), t ≥ 0, A ∈ G0,

which is not degenerating. It is well known that the unique solution of this equation with the initial
conditions

u(0) = u0, u′(0) = u1, u0, u1 ∈ D(A),

is the function u(t) = C(t)u0 + S(t)u1, where C(t) is the cosine operator function and

S(t) =

t∫
0

C(τ) dτ

is the sine operator function.
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Another limit case of γ = 2, b = 1, which does not reduce to an Euler–Poisson–Darboux equation
under the change of variables in Sec. 1 and which has not been studied in Sec. 1, results in the
degenerating abstract Euler equation

t2u′′(t) + tu′(t) = Au(t), t > 0,

which, for A ∈ G0, has the unique solution

u(t) = C(ln t)u0 + S(ln t)u1

with the initial conditions

u(1) = u0, u′(1) = u1, u0, u1 ∈ D(A).

In the monograph [19], a solution bounded at the point of degeneracy of the inhomogeneous
abstract Euler equation with operator coefficients is found by the method of small stabilizing per-
turbations.

A similar analysis can be carried out using Theorem 4.

2. ABSTRACT SHARP EQUATION

Now consider the special case of Eq. (4) for b = γ = β = 1 and B = −I. The equation

tu′′(t) + u′(t)− tu(t) = A0u(t) (21)

is called Sharp’s equation (see [20, p. 118]), and Theorem 3 holds for this equation with A0 ∈ G1. Let
us show that an explicit formula can also be specified for some its solution in the case where A0 /∈ G1.
Naturally, problem (4), (19) with such an operator will not be well posed, because the inclu-
sion A0 ∈ G1 is a necessary and sufficient condition for well-posedness.

Let the operator A0 generate a uniformly bounded group T (t;A0); then A2
0 ∈ G0 and

C(t;A2
0) = 1/2(T (t;A0) + T (−t;A0)) is the uniformly bounded cosine operator function generated

by this operator.
For u2 ∈ D(A2

0), we introduce the function

u(t) =

π/2∫
0

cosh(t cosϕ)C

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ

+

π/2∫
0

sinh(t cosϕ)A0S

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ,

(22)

where S(t;A2
0) is the sine operator function.

By virtue of the uniform boundedness of the cosine operator function C(t;A2
0), the convergence

of the first integral in (22) is obvious, while the convergence of the second integral follows from the
finiteness of integral (2.6.34.3 in [21])

π/2∫
0

ln sin
ϕ

2
dϕ.

Let us show that the function u(t) defined by relation (22) is a solution of Eq. (21) bounded at
zero, and, with this aim in mind, calculate its derivatives. After integration by parts, with allowance
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for the uniform boundedness of the cosine operator function, we obtain

u′(t) =

π/2∫
0

sinh(t cosϕ) cosϕC

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ+

π/2∫
0

cosh(t cosϕ) cosϕA0S

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ

= t

π/2∫
0

cosh(t cosϕ) sin2 ϕC

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ+

π/2∫
0

sinh(t cosϕ)C ′
(

ln cot
ϕ

2
;A2

0

)
u2 dϕ

+ t

π/2∫
0

sinh(t cosϕ) sin2 ϕA0S

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ

+

π/2∫
0

cosh(t cosϕ)A0C

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ,

u′′(t) =

π/2∫
0

cosh(t cosϕ) cos2 ϕC

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ

+

π/2∫
0

sinh(t cosϕ) cos2 ϕA0S

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ,

tu′′(t) + u′(t) = tu(t) +

π/2∫
0

sinh(t cosϕ)A2
0S

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ

+

π/2∫
0

cosh(t cosϕ)A0C

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ = tu(t) +A0u(t).

Thus, the bounded function u(t) defined by relation (22) satisfies Eq. (21) and, for t = 0, the
condition

u(0) =

π/2∫
0

C

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ.

If we pose the problem of finding a bounded solution of Eq. (21) with the initial condition

u(0) = u0, (23)

then for the element u2 ∈ D(A2
0) we obtain the operator equation of the first kind

π/2∫
0

C

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ = u0. (24)

To solve this equation, it is necessary to impose additional smoothness conditions on the initial
element u0.

Taking into account the representation of the cosine operator function C(t;A2
0) via the resolvent,

C(t;A2
0)u2 =

1

2πi

σ+i∞∫
σ−i∞

eλtλR(λ2;A2
0)u2 dλ, σ > 0, u2 ∈ E,
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we write the left-hand side of the operator equation (24) in the form
π/2∫
0

C

(
ln cot

ϕ

2
;A2

0

)
u2 dϕ = 2

∞∫
0

et

1 + e2t
C(t;A2

0)u2 dϕ

=
1

πi

σ+i∞∫
σ−i∞

∞∫
0

et(λ+1) dt

1 + e2t
λR(λ2;A2

0)u2 dλ

=
1

2πi

σ+i∞∫
σ−i∞

β

(
1− λ

2

)
λR(λ2;A2

0)u2 dλ

. (25)

(Here we have used integral 2.3.12.6 in [21], where

β(z) =
1

2

(
ψ

(
z + 1

2

)
− ψ

(
z

2

))
and ψ(·) is the psi-function (see, e.g., [21, p. 775; 22, p. 536].)

Using the representation (25), we write the operator equation (24) for u2 ∈ D(A2
0) in the form

Pu2 ≡
1

2πi

σ+i∞∫
σ−i∞

β

(
1− λ

2

)
λR(λ2;A2

0)u2 dλ = u0. (26)

Thus, the question of the solvability of the operator equation (24) reduces to the question of
the existence of an inverse operator defined on some subset in D(A2

0) for the bounded opera-
tor P : D(A2

0)→ E given by the left-hand side of Eq. (26) and extended by continuity to E. Here
an important role is played by the function

χ(λ) =
1

2
β

(
1−
√
λ

2

)
,

using which, we write Eq. (26) in the form

Pu2 ≡
1

πi

σ+i∞∫
σ−i∞

ξχ(ξ2)R(ξ2;A2
0)u2 dξ = u0.

The operator A0 generates a uniformly bounded group T (t;A0); consequently, the spectrum of
the operator A2

0 lies on the negative half-axis, and therefore, as will be seen from the proof to follow,
the fact of the lack [22, p. 536] of real zeros of the function χ(λ) will be of importance for us.

Let Υ1 be a contour on the complex plane consisting of the straight line Re z = σ1 > 0 traversed
from bottom to top; then Υ2

1 is a parabola that is the image of the straight line Υ1 under the
mapping w = z2 (z ∈ Υ1, w ∈ Υ2

1). Since the spectrum of the operator A2
0 lies on the negative

half-axis, we introduce a contour Ξ obtained from Υ1 by subtending towards the negative half-axis
so that it does not contain the zeros of the function χ(z) to the left of itself.

We take a λ0 such that Reλ0 > σ1 > 0 from the regular set ρ(A2
0) and introduce the bounded

operator

Hv =
1

2πi

∫
Ξ

R(z;A2
0)v dz

χ(z)(z − λ0)
, H : E → E, (27)

whose absolute convergence follows from the well-known inequality∥∥λR(λ2;A2
0)
∥∥ ≤ M

Reλ− ω
, Reλ > ω,

for the resolvent of the generator of the cosine operator function C(t;A2
0).
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Now let us show that the operator P has an inverse operator P−1 : D(A2
0)→ E. Let v ∈ D(A2

0),
σ1 < σ2 < Reλ. Then, applying the operator H defined by relation (27) to Pv and considering the
Hilbert identity

R(z;A2
0)R(ξ2;A2

0) =
R(z;A2

0)−R(ξ2;A2
0)

ξ2 − z
,

we obtain the relation

HPv =
1

2πi

∫
Ξ

R(z;A2
0)

χ(z)(z − λ0)

1

πi

σ2+i∞∫
σ2−i∞

ξχ(ξ2)R(ξ2;A2
0)v dξ

=
2

(2πi)2

∫
Ξ

σ2+i∞∫
σ2−i∞

(
ξχ(ξ2)R(z;A2

0)v

χ(z)(z − λ0)(ξ2 − z)
− ξχ(ξ2)R(ξ2;A2

0)v

χ(z)(z − λ0)(ξ2 − z)

)
dξ dz.

(28)

The integral in (28) converges absolutely. Changing the order of integration, we obtain

HPv =
2

(2πi)2

∫
Ξ

σ2+i∞∫
σ2−i∞

ξχ(ξ2)R(z;A2
0)v dξ dz

χ(z)(z − λ0)(ξ2 − z)

− 2

(2πi)2

σ2+i∞∫
σ2−i∞

ξχ(ξ2)R(ξ2;A2
0)v

∫
Ξ

dz

χ(z)(z − λ0)(ξ2 − z)
dξ.

(29)

If the integration contour Ξ is closed to the left, then the inner integral in the second term in (29)
vanishes by the Cauchy theorem. At the same time, we use the Cauchy integral formula to calculate
the integrals in the first term in (29). Thus, the relation

HPv =
2

(2πi)2

∫
Ξ

∫
Υ2

ξχ(ξ2)R(z;A2
0)v dξ dz

χ(z)(z − λ0)(ξ2 − z)
=

1

(2πi)2

∫
Ξ

∫
Υ2

2

χk(λ)R(z;A2
0)v dλ dz

χ(z)(z − λ0)(λ− z)

=
1

2πi

∫
Ξ

R(z;A2
0)v dz

z − λ0

= −R(λ0;A2
0)v

holds, where Υ2 is the contour on the complex plane consisting of the straight line Re z = σ2,
0 < σ1 < σ2 < Reλ traversed from bottom to top, while the contour Υ2

2 is the parabola that is the
image of the contour Υ2 under the mapping w = z2 (z ∈ Υ2, w ∈ Υ2

2).
The pairwise commuting operators H, P , and R(λ0;A2

0) are bounded, and the domain D(A2
0) is

dense in E; therefore, the relation HPv = −R(λ0;A2
0)v also holds for v ∈ E with HP : E → D(A2

0).
It follows that the operator P−1v = −(λ0I − A2

0)Hv for v ∈ D(A2
0) is the inverse of the opera-

tor P, P−1 : D(A2
0)→ E. Indeed,

PP−1v = −P (λ0I −A2
0)Hv = −PH(λ0I −A2

0)v = R(λ0;A2
0)(λ0I −A2

0)v = v, v ∈ D(A2
0),

P−1Pv = −(λ0I −A2
0)HPv = (λ0I −A2

0)R(λ0;A2
0)v = v, v ∈ E.

Returning to the operator equation (26) and additionally demanding that the inclusion
u0 ∈ D(A4

0) hold, we determine the initial element

u2 = (A2
0 − λ0I)Hu0

belonging to D(A2
0), where the operator H is given by relation (27), λ0 ∈ ρ(A2

0), and Reλ0 > σ1 > 0.
Then the function u(t) defined by (22) will be a bounded solution of Eq. (21) with the initial
condition (23). Note that the degenerating equation (21) can have a second solution unbounded
at zero. Thus, we have established the following assertion.

DIFFERENTIAL EQUATIONS Vol. 57 No. 1 2021



70 GLUSHAK

Theorem 5. Let an operator A0 generate a uniformly bounded group T (t;A0), and let the inclu-
sion u0 ∈ D(A4

0) hold. Then the function u(t) defined by relation (22) in which u2 = (A2
0−λ0I)Hu0 ,

where the operator H is given by relation (27), λ0 ∈ ρ(A2
0), and Reλ0 > σ1 > 0, is a bounded solu-

tion of Eq. (21) with the initial condition (23).

Example 1. Let E = C = D(A), A = iA1, A1 ∈ R, and u0 ∈ C. Then T (t;A0) = eitA1 ,
C(t;A2

0) = cos(tA1), and the solution of problem (21), (23) has the form

u(t) = u2

π/2∫
0

cosh

(
t cosϕ+ iA1 ln cot

ϕ

2

)
dϕ,

where the function u2 is found from the condition

u2

π/2∫
0

cos

(
A1 ln cot

ϕ

2

)
dϕ = u0.

Example 2. Let E = BUC(R) be the space of bounded uniformly continuous functions on R
(or E = Lp(R), 1 ≤ p < ∞), and consider the operator A0u(x) = u′(x) with the domain D(A0) =
{u(x) ∈ E : u(x) is absolutely continuous, u′(x) ∈ E}. Then

T (t;A0)u(x) = u(x+ t), C(t;A2
0)u(x) = 1/2

(
u(x+ t) + u(x− t)

)
,

and if u2(x) ∈ D(A2
0), then the function

u(t) =
1

2

π/2∫
0

(
cosh(t cosϕ) + sinh(t cosϕ)

)
u2

(
x+ ln cot

ϕ

2

)
dϕ

+
1

2

π/2∫
0

(
cosh(t cosϕ)− sinh(t cosϕ)

)
u2

(
x− ln cot

ϕ

2

)
dϕ

is a bounded solution of Eq. (21).

3. STRONGLY DEGENERATING DIFFERENTIAL EQUATION
WITH POWER-LAW DEGENERACY

Consider Eq. (4) in the case of strong degeneracy, γ > 2. The change of the independent variable
t = (−τ/ν)−ν , ν = 2/(2− γ), and of the unknown function u(t) = u((−τ/ν)−ν) = w(τ) transforms
the strongly degenerating equation (4) into the Euler–Poisson–Darboux equation

w′′(τ) +
1 + ν − bν

τ
w′(τ) =

(
A+

(
−τ
ν

)−νβ
B

)
w(τ), τ > 0.

By analogy with Theorems 3 and 4, one can establish the following Theorems 6 and 7, in which the
statement of initial conditions in the case of strong degeneracy is specified, the unique solvability
of the corresponding initial value problems for Eq. (4) is proved, and the relation between the
degeneracy order γ, the coefficient b multiplying the first derivative u′(t), and the set of operators A
forming the well-posed solvability class is established.

Theorem 6. Let γ > 2, 2b ≥ 4−γ , β ≥ 0, A ∈ G(2b+γ−4)/(γ−2) , B ∈ L(E), and u0 ∈ D(A). Then
the function u(t)= Ỹ(2b+γ−4)/(γ−2)(−νt−1/ν)u0 , where ν=2/(2−γ) and the function Ỹ(2b+γ−4)/(γ−2)(·)
is defined by relation (18), is the unique solution of Eq. (4) with the initial conditions

u(0) = u0, lim
t→0+

t1+1/νu′(t) = 0.
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Theorem 7. Let γ > 2, 2b < 4− γ , β ≥ 0, A ∈ G(γ−2b)/(γ−2) , B ∈ L(E), and u1 ∈ D(A). Then
the function

u(t) =
(−ν)bν−ν−1t1−b

1− b
Ỹ(γ−2b)/(γ−2)(−νt−1/ν)u1,

where ν = 2/(2 − γ) and the function Ỹ(γ−2b)/(γ−2)(·) is defined by relation (18), is the unique
solution of Eq. (4) with the initial conditions

u(0) = 0, (−ν)1+ν−bν lim
t→0+

tbu′(t) = u1.

4. ABSTRACT ANALOG OF A DIFFERENTIAL EQUATION WITH POWER-LAW
DEGENERACY IN THE SPATIAL VARIABLE

For α > 0, consider the equation

u′′(t) = tαAu(t), t ≥ 0. (30)

If A is the operator of differentiation with respect to the spatial variable x, for example,
Au(t, x) = u′′xx(t, x), then Eq. (30) is degenerating hyperbolically and generalizes the Tricomi equa-
tion but has another nature of degeneracy compared with the equations in the preceding sections.
Therefore, it is natural to call the abstract equation (30) degenerating as well.

The change of the variable t = (τ/µ)µ, µ = 2/(α + 2), and of the unknown function
u(t) = (τ/µ)µw(τ) brings the degenerating equation (30) to the Euler–Poisson–Darboux equation

w′′(τ) +
µ+ 1

τ
w′(τ) = Aw(τ), τ > 0. (31)

Since 0 < µ < 1, by Theorem 1 in [12] for A ∈ G1−µ ⊂ Gµ+1 the function

w(τ) = µµτ−µY1−µ(τ)u0 + Yµ+1(τ)u1 (32)

is the unique solution of Eq. (31) with the two nonzero initial conditions

lim
τ→0+

(
w(τ)− µµτ−µY1−µ(τ)u0

)
= u1,

lim
τ→0+

τµ+1w′(τ) = −µµ+1u0.
(33)

Getting back to the original variable in (32), (33), we obtain a representation of the solution of
Eq. (30),

u(t) = Y1−µ(µt1/µ)u0 + tYµ+1(µt1/µ)u1, (34)

and the initial conditions
u(0) = u0, u′(0) = u1, (35)

that must be satisfied by this solution. We have thus established the following assertion.

Theorem 8. Let α > 0, µ = 2/(α + 2), A ∈ G1−µ , and u0, u1 ∈ D(A). Then the function u(t)
defined by relation (34) is the unique solution of Eq. (30) with the initial conditions (35).

Note that in the special case of A = A2
0 considered in [4], where A0 is the generator of a C0-

group, there is no statement on uniqueness, and the proof of the assertion on solvability consists in
verifying a representation of the form (3) for the Bessel operator function by means of differentiation
in the integrand. Having the solution (34) and using the property of the Bessel operator function
to determine a solution of the Euler–Poisson–Darboux equation, this verification can be carried out
in a much simpler way.

We point out that adding “minor” terms to Eq. (30) requires, generally speaking, additional
smoothness of the initial conditions compared with problem (30), (35), and the initial value problem
for the modified equation may prove ill posed. Let us give an example.
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Example 3. Let u0 ∈ D(An0 ), n = max{2,m}, m ∈ N0, and let A0 be the generator of the
C0-group T (t;A0). Then the function

u(t) =

m∑
j=0

m!
√
πt2j

j!(m− j)!Γ(j + 1/2)
T (t2/2)Aj0u0 (36)

is a solution of the equation

u′′(t) = t2A2
0u(t) + (4m+ 1)A0u(t), t ≥ 0, (37)

with the initial conditions
u(0) = u0, u′(0) = 0. (38)

This fact is easy to check by substituting the function defined by relation (36) into Eq. (37) and
then by matching the coefficients multiplying t2jAj+1

0 u0, 0 ≤ j ≤ m, on the left- and right-hand
sides in the resulting relation.

Relation (36) demonstrates the presence of a dependence between the coefficient multiply-
ing A0u(t) in Eq. (37) and the smoothness of the initial element u0 in the initial conditions (38) (cf.
the case of a degenerating hyperbolic partial differential equation [3, p. 255]).

5. DEGENERATE HYPERGEOMETRIC OPERATOR EQUATION

In conclusion, let us show that, using fractional integro-differentiation (see [23, Sec. 2]), we can
investigate the degenerating hypergeometric operator equation

tu′′(t) + (bI − tA)u′(t)− cAu(t) = 0, t ≥ 0, (39)

in which the parameters b and c satisfy the inequalities b > c > 0.
We seek a solution, bounded at zero, of Eq. (39) and first assume that b > 1, c = α,

and 0 < α < 1. Considering the relation (see [23, formula (15.11)])

Dα
0+

(
tu(t)

)
= tDα

0+u(t) + αDα−1
0+ u(t)

for the Riemann–Liouville fractional derivative Dα
0+, we write this equation in the form

Dα
0+

(
t(D1−α

0+ u(t)
)′

+
(
(b− α)I − tA)D1−α

0+ u(t)
)

= 0.

Denoting v(t) = D1−α
0+ u(t), for the function v(t) we obtain the equation

tv′(t) + (b− α)v(t) = tAv(t) + tα−1v0 (40)

with some element v0 ∈ E.
For a solution of a first-order differential equation to exist, it is natural to assume that the

operator A is the generator of the C0-semigroup U(t;A). Then for the solution of Eq. (40) we take
the function

v(t) = tα−1

1∫
0

(1− s)b−2U(ts;A)v0 ds. (41)

Considering the representation (41), let us find a bounded solution of Eq. (39). After elementary
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transformations, we obtain

u(t) = I1−α
0+ v(t) =

1

Γ(1− α)

t∫
0

v(τ)

(t− τ)α
dτ

=
1

Γ(1− α)

t∫
0

τα−1

(t− τ)α

1∫
0

(1− s)b−2U(τs;A)v0 ds dτ

=
1

Γ(1− α)

t∫
0

τα−b

(t− τ)α

τ∫
0

(τ − x)b−2U(x;A)v0 dx dτ

=
1

Γ(1− α)

t∫
0

U(x;A)v0

t∫
x

τα−b(τ − x)b−2

(t− τ)α
dτ dx

=
Γ(b− 1)

Γ(b− α)tb−1

t∫
0

xα−1(t− x)b−α−1U(x;A)v0 dx

=
Γ(b− 1)

Γ(b− c)

1∫
0

sc−1(1− s)b−c−1U(ts;A)v0 ds,

(42)

where we have used integral 2.2.6.2 in [21].
Finally, for the resulting solution to satisfy the initial condition

u(0) = u0 ∈ D(A), (43)

we set v0 =
Γ(b)

Γ(b− 1)Γ(c)
u0 in the representation (42). Then

u(t) =
Γ(b)

Γ(c)Γ(b− c)

1∫
0

sc−1(1− s)b−c−1U(ts;A)u0 ds. (44)

Relation (44), established for b > 1 and 0 < c < 1, also holds for b > c > 0 by the analytic
continuation principle. Thus, we have proved the following assertion.

Theorem 9. Let an operator A generate a C0-semigroup U(t;A), b > c > 0, and let the
inclusion u0 ∈ D(A) hold. Then the function u(t) defined by relation (44) is a bounded solution of
the degenerate hypergeometric operator equation (39) with the initial condition (43).
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