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The flow around a heated spherical drop in  a viscous non-isothermal gaseous medium with uniformly  
distributed constant-power heat sources (sinks) acting inside is theoretically described in the Stokes 
approximation. I t  is assumed that the mean temperature of the drop surface can differ substantially  
from the temperature of the ambient gaseous medium. A n  analytical expression fo r  the drag force 
and drift velocity in  the gravity field is derived by solving hydrodynamic equations with allowance for  
the temperature dependence of viscosity, thermal conductivity, and density of the gaseous medium.

K eyw ord s: motion of heated drops in  a gas, gravitational motion, Stokes approximation, drag force.

1. F orm u la tion  o f  th e  P ro b lem . In some cases of b o th  theoretical and practical im portance, it is 
necessary to  study  the influence of heating of the drop surface and circulation m otion of the  liquid inside the drop 
on its drag force and velocity for instance, in designing experim ental facilities w ith directed m otion of particles, 
in developm ent of m ethods of fine cleaning of gases from aerosol particles, in m athem atical modeling of particle 
deposition in plane-parallel channels w ith different tem peratu res of the  m edium  inside, etc. In addition, there are 
problem s of waste cleaning from aerosol particles, whose solution involves estim ation of the  drag  force of particle 
m otion in the  am bient medium.

A nalytical expressions for the  drag force of a heated drop w ith uniform ly d istribu ted  heat sources inside the 
drop and for its d rift velocity in the  gravity  field w ith a rb itra ry  tem pera tu re  differences between the drop surface 
and the area far from the drop, which are generalizations of the  H adam ard-R ybchinskii formulas [1], are derived in 
th is work in the Stokes approxim ation.

Let us consider a steady  flow around a heated spherical drop of radius R  and density  pi by a gas flow moving 
along the O z  axis; the flow velocity far from the drop is U0Q. Uniform ly d istribu ted  heat sources (sinks) w ith a 
constan t power qi act inside the drop, which results in drop surface heating. The action of these sources m ay be 
caused, for instance, by a volume chemical reaction [2], by radioactive decom position of the particle substance, by 
absorption of electrom agnetic radiation, etc. The thus-induced increase in tem pera tu re  of the drop surface affects 
therm ophysical characteristics of the gaseous m edium  and, therefore, m ay exert a pronounced effect on the velocity 
and pressure fields in the  neighborhood of the  drop and, hence, on the  value of its drag force.

The drop is assum ed to  have a ra th e r large size (R  <  100 /xm), its therm al conductivity  is much g reater th an  
the therm al conductivity  of the  gas (A; As ), and it has a spherical shape (surface tension acting on the liquid-gas 
interface counteracts against shear stresses, which tend  to  deform the spherical shape of the drop). As A; As , 
the therm ocapillary effect (M arangoni effect) is ignored in the  problem  [3] (the tem pera tu re  over the drop surface 
is constant), and the drop radius rem ains alm ost unchanged during the characteristic time.
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The m otion of drops w ith small relative differences in tem pera tu re  in their neighborhood was studied  in much 
detail in known works dealing w ith the m otion of spherical drops in viscous liquid and gaseous m edia [4-6]. The 
tem pera tu re  difference is understood  as the  difference between the drop surface tem pera tu re  and the tem pera tu re  of 
the am bient m edium  far from the drop. The relative tem pera tu re  difference is assum ed to  be small if the inequality 
('Tig — Tgoo)/ T goo «C 1 is satisfied and to  be considerable if (TJS — Tgoo) /T goo ~  0 (1 ) (T;s is the m ean tem pera tu re  
of the  drop surface and Tgoo is the  tem pera tu re  of the gaseous m edium  far from the particle; the subscripts g 
and I refer to  the gaseous m edium  and the heated  liquid drop, respectively; the gas param eters a t infinity, in the 
undisturbed  flow, are m arked by the subscript “oo,” and the subscript s refers to  the values of physical quantities 
a t the  m ean tem pera tu re  of the  drop surface equal to  T;s).

The m otion of heated  solid particles (w ith considerable tem pera tu re  differences) in viscous liquid and non- 
isotherm al gaseous m edia was considered in various papers (see, e.g., [7-10]) where surface heating was dem onstrated  
to  exert a significant effect on the drag force and velocity of particles.

In considering the flow around a heated drop w ith an a rb itra ry  relative difference in tem perature, it is 
necessary to  take into account the  tem pera tu re  dependence of the  coefficients of m olecular tran sp o rt (viscosity and 
therm al conductivity) and density  of the gaseous m edium  in gas-dynam ic equations. In th is work, the  power-law 
dependences of these coefficients on tem pera tu re  are used to  describe the properties of the  gaseous medium:

3 ^ / 1  i A g  ^ g o o tg :  P g  P g o o / t gUg.

Here, Ag(2 g, Pg c Pg(Tgoo), tg = T g /Tgoo, 0.5 <  a  <  1.0, and 0.5 <  ß  <  1.0 (a  =  0.81Pg OO PgiTg OO )
and /3 =  0.72 for air; a  =  0.71 and /3 =  0.69 for nitrogen; the relative error of approxim ation is w ithin 4%) [11].

The equations for the  particle velocity U, pressure P , and  tem pera tu re  T  inside and outside the heated  drop 
are w ritten  in the  following form in the Stokes approxim ation under the  assum ptions m ade [1, 12, 13]:
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Problem  (1.1)—(1.3) is solved in the  drop-fitted coordinate system  (in a spherical coordinate system  (r, 0, <p) 
where the coordinate r  is counted from the  drop center and the  angle 0 is counted from the free-stream  velocity 
direction) under the  boundary  conditions

Pg = UgkTg.
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r  ->• 0 , \ U i \ ^  co, Pi ^  oo, T i ^  oo. ( 1 .6 )

Here, Ur and  Ug are the  radial and tangential com ponents of particle velocity, /x, A, and p are the viscosity,
therm al conductivity, and density, respectively, a o is the S tefan-B oltzm ann constant, a i is the integral emissivity,
qi =  const is the constant density  of heat sources acting inside the drop [14], and e r and  eg are the un it o rths of
the spherical coordinate system.

The boundary  conditions on the drop surface (1.4) take into account the conditions of im perm eability and 
continuity  for the norm al and tangential velocity com ponents, equality  of tem peratures, and continuity  of heat 
fluxes and tangential com ponents of the stress tensor. The boundary  conditions (1.5) are valid a t a large distance 
from the drop, and Eq. (1.6) is the condition of finiteness of physical quantities.

The force acting on the particle from the flow is determ ined by the formula [1, 12]

Fz = J (—Pg cos 0 +  a rr cosO — arg s in 0 )r2 sin 0 dO dip, (1.7)



where arr and arg are the  com ponents of the  to ta l stress tensor, which are described in the  spherical coordinate 
system  as

f n 8 UrB 2 \  ( dU 9e 1  8 U 8 U9 \
a r r ~ M 2 dr  3 s ) ’ ar e - V g [ dr + r d 0  r  )■

The governing param eters of the  problem  are the coefficients p goo, pgo0, and Xgoo, and also the  quantities R , 
Tgo o ,  and U0o ,  which rem ain unchanged in the course of the  flow around a spherical drop. Using these param eters, 
we can compose a dimensionless complex, namely, the  Reynolds num ber Reoo = e = PgooUooR/pgoo 1.

At e <  1, the incoming flow induces only a m inor pertu rbation ; therefore, we can use the zeroth approxi­
m ation in term s of e in solving gas-dynam ic equations.

The expressions for the  velocity, pressure, and tem pera tu re  fields are sought in the  form

Ur (r, 9) = UcoG{y) co s9, Ug{r, 9) = - U cog{y)s\n9 , P (r, 9) = h(y) co s9, (1.8)

where G(y), g(y), and h(y) are a rb itra ry  functions depending on the coordinate y = r / R .
2. V e lo c ity  Feld  and  T em p era tu re  D is tr ib u tio n . D e te r m in a tio n  o f  th e  D rag  F orce an d  D rift  

V elo c ity  o f  th e  D ro p . To find the force acting from the  gas onto the drop and the drift velocity of the  drop in the 
gravity  field, we have to  know the  distributions of tem perature, particle velocity, and pressure in the neighborhood 
of the drop. In tegrating  Eqs. (1.3), we obtain

i s o ( y ) = ( l  +  — )  , Uo(y) = B 0 + —  + -  f  ipo dy -  f  —  dy. (2 .1 )
V y /  V V J J y

y y

Here, B q and Do are constants determ ined from the  appropria te  boundary  conditions on the drop surface (1.4), 
r 0 =  — 1 is the  dimensionless param eter characterizing the  difference in tem pera tu re  between the drop surface

R 2 +f
and the m edium  far from the drop, -00 =  — 777----w,—  y 2 /  qi dx,  x  =  co s9, t is = Tis/ T goo, and T;s is the  m ean
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tem pera tu re  of the heated drop surface, which is found by solving the system  of equations
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y=i
In view of Eq. (2.1), the expression for dynam ic viscosity can be presented as

Ms =  A4gootgo■ (2-3)

In w hat follows, Eq. (2.3) is used to  find the velocity and pressure fields in the neighborhood of the  heated  drop.
S ubstitu ting  Eq. (1.8) into the continuity  equation (1.1) and taking into account the  dependence of density 

on tem pera tu re  pg = pgOo/tg 0 , we find the relation between the  functions G(y)  and g(y)\

1 „.(dGiy)  
dy

Here,

9iv) = G(y) + \  y  -  f G { y ) )  . (2.4)
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Let us find the expressions for the com ponents of velocity and pressure of the gaseous medium. Substitu ting  
Eqs. (2.3), (1.8), and (2.4) into the N avier-Stokes equations (1.1) linearized in term s of velocity, separating the 
variables, and applying certain  transform ations, we ob tain  an inhomogeneous th ird-order differential equation for 
the  function G(y); the  solution of th is equation is sought in the form of generalized power series (see [10]). The 
recurrent formulas for the power series coefficients are determ ined by the  m ethod of undeterm ined coefficients. The 
general expressions for the  particle velocity com ponents satisfying the solution boundedness condition a t y —> oo 
have the form



U°{y, 9) = Uoo cos9 (A \G \(y )  +  A 2 G 2 (y) +  A 3 G 3 (y)), 

Ug (y, 9) = -Uoo  s in 9 ( A i G ^ y )  + A 2 G 5 (y) + A 3 G 6 (y)),
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G \, G \,  and  G \  are the  first derivatives of the functions G i, G 2, and  G3 w ith  respect to  y, respectively.
The expressions for the  coefficients C n '1 (n  ^  1), C f  (n ^  4), and C n '1 (n ^  3) found by the m ethod of 

undeterm ined coefficients are w ritten  as
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In calculating the coefficients C n \  C n \  and  G f  by the recurrent formulas, one should take into
account th a t

G f  =  1, G<3) =  1, G f } =  0, G23) =  7 3 /4 , Gg3) =  1,

w3 _  73 , 1f. o \ ~ (2) _  . „ ( 2) _  _  /3
2f3  ^  “ 60 ( 1 0  + 8 7 1  +  72 )1  C ° _ 1 ,  ^ 2 _ 1 ,



=  1 5  ( l  + 7 2  +  6 w ° ) ( 4  +  3 7 i  +  7 2 )  +  3 7 3  +  3 w 0 ( w 0  -  l ) j ,

G (2 ) (2 7 1 + 7 2 + 6w0).

At n  <  0, C ^ \  C n \  and have zero values.
To take into account the influence of circulation m otion of the liquid inside the heated drop, we find the 

solution of Eqs. (1.2). The solution of the hydrodynam ic p a rt of the equations for the  dom ain inside the drop is 
the  H ill’s spherical vortex [1]. The general solution of these equations has the form [1]

U'r (y ,9 ) = lJ0 0 c o s9 {A i  + A 5 y 2), U le( y , e ) = - U ^  s in 6» (A 4 + 2A 5 y 2),

Pi(y, 9) = P 0 +  10№s^ ° °  cos 9 y 2 A 5.

The in tegration  constants A t ,  A 2, . . . ,  As  involved into the  formulas for the velocity fields are determ ined 
from the corresponding boundary  conditions on the particle surface:
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G \ \  G \ \  and GJj1 are the  second derivatives of the functions G 1 , G 2, and G3 w ith  respect to  y, respectively.
The to ta l force acting on the heated drop is determ ined by in tegrating the stress tensor over the  drop surface 

[see Eq. (1.7)]. S ubstitu ting  the above-obtained expressions into Eq. (1.7) and integrating, we obtain

F z 47t R[j/gC0 UC0 A 2 n z ,

where n z is the  un it vector in the  direction of the O z  axis.
Taking into account the  constan t A 2 in Eq. (2.5), we ob tain  the following expression for the force acting on 

the heated  spherical drop:

2 N 2 +  PgSN s / (3/X;s)
671" R p g o o f j j [ J C X , T I Z  , J 'j l ( 2 .6 )

M 3 N l  +  PgsN^/(3fJ,ls)

Form ula (2.6) allows us to  estim ate the drag force of the  heated  drop, i.e., the  drop w ith uniform ly d istribu ted  
constant-pow er heat sources acting inside the drop. Form ula (2.6) is valid for a rb itra ry  relative differences in 
tem pera tu re  in the neighborhood of the drop w ith allowance for the  power-law dependence of the coefficients of 
m olecular tran sp o rt (viscosity and therm al conductivity) and density of the gaseous m edium  on tem perature.

As an example, we find the  drift velocity of the heated  drop in the  gravity  field. For this purpose, Eq. (2.6) 
should be equated  to  the expression for the  gravity  force, which takes into account the  buoyancy force. As a result, 
we obtain  the formula

U„ \ n z , 1 ^ o 2 Pis Pgs -^1 ^  PgsN 4 / (3/i.isn„ = — JrC 
M 9 g, (2.7)

Ms OO N 2 +  PgsNs/(3fJ,ls

where g is the free-fall acceleration.
Form ula (2.7) generalizes the  H adam ard-R ybchinskii formula [1] and allows calculating the drift velocity of 

the drop in the  gravity  field w ith a rb itra ry  tem pera tu re  differences in the neighborhood of the  drop.
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Fig. 1. Functions /  (a) and h (b) versus the mean temperature of the drop surface Tia: 
a  = /3 = 0.5 (1), a  = /3 = 0.7 (2), and a  = /3 = 1.0 (3).

Passing to  the lim it yit;s —> oo in Eqs. (2.6) and (2.7) (the dynam ic viscosity of the drop is extrem ely large), 
we ob tain  the formulas

El   C_D..  TT TT   2 d 2 Pis ~  Pgs N iFfi birRfj,g,x  L lX,; L p R  g ,
o i V  i  y  f^ go o  ^ 2

which coincide w ith the expressions for the  force and velocity of gravitational m otion of a uniform ly heated  spherical 
solid particle [10].

If the degree of heating of the  drop surface is ra th e r small, i.e., the  m ean tem pera tu re  of the  drop surface is 
only slightly different from the am bient tem pera tu re  far from the drop (To —> 0 ), then  the  dependence of density 
and m olecular tran sp o rt coefficients on tem pera tu re  can be neglected. Then, for y =  1, we ob tain  G\ =  1, G \ =  —3,
G 1̂  =  12, G 2 =  1, G\ =  - 1 ,  G !,1 =  2, G3 =  1, Gg =  0, Gg1 =  0, G4 =  - 1 /2 ,  Gs =  1/2, G 6 =  1, N x =  2, N 2 =  3, 
N 3 =  6 , and N 4 =  6 . In  th is case, Eq. (2.7) takes the  form

U = 1  R 2 Pi Pg 1 Pgoo/Ploo
9 Msco 1 ^Pgo?/{3pio?)

and transform s to  the  H adam ard-R ybchinskii formula [1], i.e., the lim iting transition  is performed.
Figure 1 shows the drag force and velocity of g rav itational drift of a potassium  drop moving in a nitrogen 

flow as functions of the tem pera tu re  T;s . The num erical estim ates are obtained by Eqs. (2.6) and (2.7) relating

the values of /  =  / M/ / M and h =  /?M//?M (Tis =  336 K) w ith the values of T;s for the drop w ith the radius
Tls Tls

R  =  100 yitm a t Tg,x  =  336 K and Pg =  1 atm . The curves f { T is ) and h{Tis ) are constructed  for a  = /3 =  0.5, 0.7, 
and 1 .0 .

I t is seen in the figure th a t heating of the  drop surface is insignificant in the  case w ith a small difference 
in tem pera tu re  in the  neighborhood of the drop. This result agrees w ith experim ental d a ta  [1]. As the m ean 
tem pera tu re  increases, heating  of the drop surface exerts a significant effect on the velocity of gravitational m otion 
of the  drop and its drag force. A sim ilar result is obtained in the case of a uniform ly heated  spherical solid particle. 
This fact was dem onstrated  in [10], where a com parison w ith experim ental d a ta  [15] was performed.

C o n clu sio n s. Expressions for the drag force and drift velocity of a heated  spherical drop in the gravity 
field in a viscous nonisotherm al gaseous m edium  w ith a rb itra ry  differences in tem pera tu re  between the particle 
surface and the  dom ain far from it are derived w ith allowance for the  dependence of the gaseous m edium  density 
and molecular tran sp o rt coefficients (viscosity and therm al conductivity) on tem perature. These expressions are 
generalizations of the H adam ard-R ybchinskii formulas.

Some au thors believed th a t it is necessary to  take into account the  B arn e tt tem pera tu re  stresses in solving 
problem s w ith nonisotherm al flows [16]. For instance, the problem  of the flow around an intensely heated  sphere 
was solved num erically w ith allowance for the  B arn e tt stresses [17]. The B arn e tt tem pera tu re  stresses can exert



a significant effect on particle m otion a t M ach num bers substan tially  sm aller th an  un ity  (M —> 0) and Reynolds 
num bers of the order of or sm aller th an  un ity  [18]. In the present work, we consider the  flow around a heated 
particle a t Reynolds and Peclet num ber appreciably smaller th an  unity. In th is case, the  tem pera tu re  stresses can 
be neglected even in the  case w ith the relative tem pera tu re  difference of the  order of unity. Taking into account 
th a t Re =  M / K n ,  one cane obtain  estim ates for the Mach and K nudsen num bers and, correspondingly, determ ine 
the area of applicability of the theory  considered here.
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novational Russia” in 2009-2013 (S tate C on tract No. 1923 d ated  26.10.09) and by the Federal Purpose P rogram  
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