ON THE FORCE ACTING ON A HEATED SPHERICAL DROP
MOVING IN A GASEOUS MEDIUM
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The flow around a heated spherical drop in a viscous non-isothermal gaseous medium with uniformly
distributed constani-power heat sources (sinks) acting inside is theoretically described in the Stokes
approzimation. It is assumed that the mean temperature of the drop surface can differ substantially
from the temperature of the ambient gaseous medium. An analytical expression for the drag force
and drift velocity in the gravity field is derived by solving hydrodynamic equations with allowance for
the temperature dependence of viscosity, thermal conductivity, and density of the gaseous medium.
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1. Formulation of the Problem. In some cases of both theoretical and practical importance, it is
necessary to study the influence of heating of the drop surface and circulation motion of the liquid inside the drop
on its drag force and velocity, for instance, in designing experimental facilities with directed motion of particles,
in development of methods of fine cleaning of gases from aerosol particles, in mathematical modeling of particle
deposition in plane-parallel channels with different temperatures of the medium inside, etc. In addition, there are
problems of waste cleaning from aerosol particles, whose solution involves estimation of the drag force of particle
motion in the ambient medium.

Analytical expressions for the drag force of a heated drop with uniformly distributed heat sources inside the
drop and for its drift velocity in the gravity field with arbitrary temperature differences between the drop surface
and the area far from the drop, which are generalizations of the Hadamard—Rybchinskii formulas [1], are derived in
this work in the Stokes approximation.

Let us consider a steady flow around a heated spherical drop of radius R and density p; by a gas flow moving
along the Oz axis; the flow velocity far from the drop is U.,. Uniformly distributed heat sources (sinks) with a
constant power ¢; act inside the drop, which results in drop surface heating. The action of these sources may be
caused, for instance, by a volume chemical reaction [2], by radioactive decomposition of the particle substance, by
absorption of electromagnetic radiation, etc. The thus-induced increase in temperature of the drop surface affects
thermophysical characteristics of the gaseous medium and, therefore, may exert a pronounced effect on the velocity
and pressure fields in the neighborhood of the drop and, hence, on the value of its drag force.

The drop is assumed to have a rather large size (R < 100 pm), its thermal conductivity is much greater than
the thermal conductivity of the gas (A, > A;), and it has a spherical shape (surface tension acting on the liquid-gas
interface counteracts against shear stresses, which tend to deform the spherical shape of the drop). As X > Ay,
the thermocapillary effect (Marangoni effect) is ignored in the problem [3] (the temperature over the drop surface
is constant), and the drop radius remains almost unchanged during the characteristic time.
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The motion of drops with small relative differences in temperature in their neighborhood was studied in much
detail in known works dealing with the motion of spherical drops in viscous liquid and gaseous media [4-6]. The
temperature difference is understood as the difference between the drop surface temperature and the temperature of
the ambient medium far from the drop. The relative temperature difference is assumed to be small if the inequality
(Tis — Tyoo)/Tyoo € 1 is satisfied and to be considerable if (Tjs — Tyoo)/Tyeo ~ O(1) (135 is the mean temperature
of the drop surface and Ty, is the temperature of the gaseous medium far from the particle; the subscripts g
and [ refer to the gaseous medium and the heated liquid drop, respectively; the gas parameters at infinity, in the
undisturbed flow, are marked by the subscript “co,” and the subscript s refers to the values of physical quantities
at the mean temperature of the drop surface equal to Tj;).

The motion of heated solid particles (with considerable temperature differences) in viscous liquid and non-
isothermal gaseous media was considered in various papers (see, e.g., [7—10]) where surface heating was demonstrated
to exert a significant effect on the drag force and velocity of particles.

In considering the flow around a heated drop with an arbitrary relative difference in temperature, it is
necessary to take into account the temperature dependence of the coefficients of molecular transport (viscosity and
thermal conductivity) and density of the gaseous medium in gas-dynamic equations. In this work, the power-law
dependences of these coefficients on temperature are used to describe the properties of the gaseous medium:

Hg = Ngootg7 Ag = Agooly, Pg = Pgeo/tg.
Here, prgoc = 11g(Tgo0)s Agoo = Ag(Tgoo)s Pgoo = pg(Tgo0)s tg = T4/ Tgec, 0.6 < < 1.0, and 0.5 < S < 1.0 (¢ =0.81
and 8 = 0.72 for air; & = 0.71 and 8 = 0.69 for nitrogen; the relative error of approximation is within 4%) [11].

The equations for the particle velocity U, pressure P, and temperature T inside and outside the heated drop
are written in the following form in the Stokes approximation under the assumptions made [1, 12, 13]:
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Problem (1.1)—(1.3) is solved in the drop-fitted coordinate system (in a spherical coordinate system (r, 8, ¢)
where the coordinate r is counted from the drop center and the angle # is counted from the free-stream velocity
direction) under the boundary conditions
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Here, U, and Uy are the radial and tangential components of particle velocity, p, A, and p are the viscosity,
thermal conductivity, and density, respectively, oo is the Stefan—Boltzmann constant, oy is the integral emissivity,
q = const is the constant density of heat sources acting inside the drop [14], and e, and ey are the unit orths of
the spherical coordinate system.

The boundary conditions on the drop surface (1.4) take into account the conditions of impermeability and
continuity for the normal and tangential velocity components, equality of temperatures, and continuity of heat
fluxes and tangential components of the stress tensor. The boundary conditions (1.5) are valid at a large distance
from the drop, and Eq. (1.6) is the condition of finiteness of physical quantities.

The force acting on the particle from the flow is determined by the formula [1, 12]

F, = /(—Pg cos 0 + 0,y cos — g sin0)r? sin O d dp, (1.7)
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where o, and 0,9 are the components of the total stress tensor, which are described in the spherical coordinate
system as

ousg 2 aug  19Us  U§
orr = “g<2 o 3 diVUg)? oo :“g< o a0 T 76)

The governing parameters of the problem are the coeflicients pigeo, fgeo, and Ageo, and also the quantities R,
Tyoo, and U, which remain unchanged in the course of the flow around a spherical drop. Using these parameters,
we can compose a dimensionless complex, namely, the Reynolds number Re., = 2 = pgocUso B/ tigoo < 1.

At ¢ <« 1, the incoming flow induces only a minor perturbation; therefore, we can use the zeroth approxi-
mation in terms of ¢ in solving gas-dynamic equations.

The expressions for the velocity, pressure, and temperature fields are sought in the form

U.(r,0) = U G(y) cos b, Ug(r,0) = —Usg(y)sind, P(r,0) = h(y)cos b, (1.8)

where G(y), g(y), and h(y) are arbitrary functions depending on the coordinate y = r/R.

2. Velocity Feld and Temperature Distribution. Determination of the Drag Force and Drift
Velocity of the Drop. To find the force acting from the gas onto the drop and the drift velocity of the drop in the
gravity field, we have to know the distributions of temperature, particle velocity, and pressure in the neighborhood
of the drop. Integrating Eqgs. (1.3), we obtain
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Here, By and Dy are constants determined from the appropriate boundary conditions on the drop surface (1.4),
I'y = tllj * —1 is the dimensionless parameter characterizing the difference in temperature between the drop surface
+1
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and the medium far from the drop, o = _m
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temperature of the heated drop surface, which is found by solving the system of equations
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In view of Eq. (2.1), the expression for dynamic viscosity can be presented as
Hg = Mgoot§0~ (2.3)

In what follows, Eq. (2.3) is used to find the velocity and pressure fields in the neighborhood of the heated drop.
Substituting Eq. (1.8) into the continuity equation (1.1) and taking into account the dependence of density
on temperature p; = pgoo/tg0, We find the relation between the functions G(y) and g(y):

o) =G + 3 u( 2 - ). (24)
Here,
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Let us find the expressions for the components of velocity and pressure of the gaseous medium. Substituting
Eqgs. (2.3), (1.8), and (2.4) into the Navier—Stokes equations (1.1) linearized in terms of velocity, separating the
variables, and applying certain transformations, we obtain an inhomogeneous third-order differential equation for
the function G(y); the solution of this equation is sought in the form of generalized power series (see [10]). The
recurrent formulas for the power series coefficients are determined by the method of undetermined coefficients. The
general expressions for the particle velocity components satisfying the solution boundedness condition at y — oo
have the form
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G, Gb, and G} are the first derivatives of the functions Gy, Go, and G3 with respect to y, respectively.

The expressions for the coefficients b (n>=1), P (n = 4), and c? (n = 3) found by the method of
undetermined coefficients are written as
1
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In calculating the coefficients C,(Ll), 07(12)7 and C,(LS) by the recurrent formulas, one should take into
account that
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At n <0, C,(Ll), 07(12)7 and C,(LS) have zero values.

To take into account the influence of circulation motion of the liquid inside the heated drop, we find the
solution of Eqgs. (1.2). The solution of the hydrodynamic part of the equations for the domain inside the drop is
the Hill’s spherical vortex [1]. The general solution of these equations has the form [1]

Uly,0) = Usscos @ (Ag + Asy?),  Uj(y,0) = —Usesin® (Ay + 245y7),
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The integration constants A, Ao, ..., As involved into the formulas for the velocity fields are determined
from the corresponding boundary conditions on the particle surface:
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G GYL and GY are the second derivatives of the functions Gy, G, and G with respect to y, respectively.
The total force acting on the heated drop is determined by integrating the stress tensor over the drop surface
[see Eq. (1.7)]. Substituting the above-obtained expressions into Eq. (1.7) and integrating, we obtain

F, = —4nRpgecUsAom;,

where n, is the unit vector in the direction of the Oz axis.
Taking into account the constant As in Eq. (2.5), we obtain the following expression for the force acting on
the heated spherical drop:

2 No+ pgs N3/ (3pus)
3 Ny + MgsN4/(3Mls) .

Formula (2.6) allows us to estimate the drag force of the heated drop, i.e., the drop with uniformly distributed
constant-power heat sources acting inside the drop. Formula (2.6) is valid for arbitrary relative differences in

F, = 6mRugoo fulUoom:, fu (2.6)

temperature in the neighborhood of the drop with allowance for the power-law dependence of the coefficients of
molecular transport (viscosity and thermal conductivity) and density of the gaseous medium on temperature.

As an example, we find the drift velocity of the heated drop in the gravity field. For this purpose, Eq. (2.6)
should be equated to the expression for the gravity force, which takes into account the buoyancy force. As a result,

we obtain the formula
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where g is the free-fall acceleration.
Formula (2.7) generalizes the Hadamard—Rybchinskii formula [1] and allows calculating the drift velocity of
the drop in the gravity field with arbitrary temperature differences in the neighborhood of the drop.
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Fig. 1L Functions / (a) and h (b) versus the mean temperature of the drop surface Tia:
a=/=05(),a=/RB=07(2),and a=//3=10 (3).

Passing to the limit yits —o00 in Eqgs. (2.6) and (2.7) (the dynamic viscosity of the drop is extremely large),
we obtain the formulas
Hi bcl:rFQJ',g,x il_TIX,; [rp 2 dﬁ Pis ~ Pgs Ni g,
0iVi y fAgoo ~2
which coincide with the expressions for the force and velocity of gravitational motion of a uniformly heated spherical
solid particle [10].

If the degree of heating of the drop surface is rather small, i.e., the mean temperature of the drop surface is
only slightly different from the ambient temperature far from the drop (To —>0), then the dependence of density
and molecular transport coefficients on temperature can be neglected. Then, fory = 1, we obtain G\ = 1, G\ = -3,
G2 =12, G2=1 G\ = -1, G,1= 2,G3=1Gg=0,Gg1t=0, G4=-1/2, Gs = 1/2, G6= 1, Nx= 2, N2 = 3,
Ns = 6, and N4 = 6. In this case, Eq. (2.7) takes the form

U=1R2Pi Pg 1 Pgoo/Ploo
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and transforms to the Hadamard-Rybchinskii formula [1], i.e., the limiting transition is performed.
Figure 1 shows the drag force and velocity of gravitational drift of a potassium drop moving in a nitrogen
flow as functions of the temperature T;s. The numerical estimates are obtained by Eqgs. (2.6) and (2.7) relating

the values of / = /M/MTI and h = /’?M/’?M_I_I (Tis = 336 K) with the values of T;s for the drop with the radius
S S

R = 100 yitm at Tgx = 336 K and Pg = 1 atm. The curves f{Tis) and h{Tis) are constructed for a = /3= 0.5, 0.7,
and 1.0.

It is seen in the figure that heating of the drop surface is insignificant in the case with a small difference
in temperature in the neighborhood of the drop. This result agrees with experimental data [1]. As the mean
temperature increases, heating of the drop surface exerts a significant effect on the velocity of gravitational motion
of the drop and its drag force. A similar result is obtained in the case of a uniformly heated spherical solid particle.
This fact was demonstrated in [10], where a comparison with experimental data [15] was performed.

Conclusions. Expressions for the drag force and drift velocity of a heated spherical drop in the gravity
field in a viscous nonisothermal gaseous medium with arbitrary differences in temperature between the particle
surface and the domain far from it are derived with allowance for the dependence of the gaseous medium density
and molecular transport coefficients (viscosity and thermal conductivity) on temperature. These expressions are
generalizations of the Hadamard-Rybchinskii formulas.

Some authors believed that it is necessary to take into account the Barnett temperature stresses in solving
problems with nonisothermal flows [16]. For instance, the problem of the flow around an intensely heated sphere
was solved numerically with allowance for the Barnett stresses [17]. The Barnett temperature stresses can exert



a significant effect on particle motion at Mach numbers substantially smaller than unity (M — 0) and Reynolds
numbers of the order of or smaller than unity [18]. In the present work, we consider the flow around a heated
particle at Reynolds and Peclet number appreciably smaller than unity. In this case, the temperature stresses can
be neglected even in the case with the relative temperature difference of the order of unity. Taking into account
that Re = M/Kn, one cane obtain estimates for the Mach and Knudsen numbers and, correspondingly, determine
the area of applicability of the theory considered here.
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