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STATEMENT OF THE PROBLEM

The thermophoretic motion of a drop arises when an
immobile liquid is subjected to an external temperature
gradient. Under the action of the thermocapillary and
viscous forces, the drop acquires a constant velocity,
the so-called rate of thermophoresis. In general, this
motion is related to shear forces appearing on the sur-
face of the drop because of the temperature variation of
the surface tension coefficient 

 

σ

 

 (the Marangoni effect)
and the thermal creep of the environment over the sur-

face. In [3], the thermal creep coefficient  was esti-
mated for a number of liquids. For example, for mer-
cury drops moving in water and glycerol, it was found

to be  = 0.13 and 2.5 

 

×

 

 10

 

–5

 

, respectively. Hereafter,
the indices 

 

e

 

 and 

 

i

 

 refer to a viscous liquid and drop,
respectively; the subscript tc, to liquid parameters away
from the drop; the subscript 

 

s

 

, to physical quantities
taken at the mean temperature of the surface of the
drop. Note that the thermal creep coefficient has been
so far evaluated with a reasonable accuracy only for
gases [4]. This is because a rigorous mathematical the-
ory of inhomogeneous liquids is absent.

Consider a heated drop of a viscous incompressible
liquid steadily moving in another viscous incompress-
ible liquid occupying the entire space. The liquids are
immiscible with each other. By a heated drop, we mean
a drop whose mean surface temperature far exceeds the
ambient temperature. The drop may be heated, for
example, by a chemical reaction proceeding in its bulk,
radioactive decay of the drop material, absorption of
electromagnetic radiation, etc. The heated surface of
the drop has a significant effect on the thermal physical
properties of the environment and thereby affects
greatly the velocity and pressure fields in its vicinity. At
infinity, the liquid is at rest and is subjected to a given
temperature gradient. It is assumed that the densities,
thermal conductivities, and specific heats inside and
outside the liquids are constant; the viscosity coeffi-

K tc
e

K tc
e

 

cient of the drop exceeds that of the environmental liq-
uid; and the surface tension coefficient is an arbitrary
function of temperature. Also, the drop is assumed to
move slowly (small Peclet and Reynolds numbers) and
retain the spherical shape (the distortion of sphericity
will be discussed later).

Unlike the case studied previously [1–8], we here
consider the thermophoretic motion of a spherical drop
for an arbitrary temperature difference between the sur-
face of the drop and areas away from it. In the equation
of hydrodynamics, the temperature dependence of the
viscosity has the form of an exponential–power series;
in the equation of heat conduction, only convective
terms are taken into account.

For the hydrodynamic problem [9, 10] and for the
thermal problem [11], it was shown that the inertial and
convective terms away from the sphere become compa-
rable to those responsible for molecular transfer by
order of magnitude. Therefore, the standard method of
expansion in a small parameter introduces a noticeable
error in this case, because it cannot satisfy rigorously
boundary conditions at infinity and find an exact unified
solution equally valid in the entire flow domain.

It was demonstrated [12] that the heating of the sur-
face of the drop and taking into account the motion of
the liquid affect significantly the drag force of the
medium. In this work, we study the effect of the motion
of the medium on the force and rate of thermophoresis
for a heated drop with an arbitrary temperature differ-
ence in its vicinity in the presence of a given external
temperature gradient.

Of all transport parameters of a liquid, only the vis-
cosity coefficient strongly depends on temperature
[13]. To include this dependence, we take advantage of
the formula

(1)µe µ∞ 1 Fn

Te
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which describes the variation of the viscosity over a
wide temperature range with any desired accuracy. (At

 

F

 

n

 

 = 0, this formula is reduced to the well-known Rey-
nolds relationship [13]).

It is known that the viscosity of a liquid decreases
with increasing temperature by the exponential law
[13]. The analysis of the semi-empiric formulas of fre-
quent use showed that expression (1) describes the vis-
cosity variation over a wide temperature range most
adequately with any desired accuracy. With the coeffi-
cients 

 

F

 

n

 

 not taken into consideration, the error can be
as high as 40%. For illustration, Tables 1 and 2 list the
values of 

 

F

 

n

 

 for glycerol and water. The relative error
does not exceed 3%. The coefficients 

 

F

 

n

 

 were calcu-
lated with the Maple V software suite.

Let us place the origin of a fixed coordinate system
at the instantaneous center of a spherical drop of radius

 

R

 

. We assume that the drop moves with a constant
velocity 

 

U

 

 in the negative 

 

OZ

 

 direction. The velocity
and pressure distributions must be symmetric about the
line passing through the center of the drop parallel to
the velocity vector 

 

U

 

. In terms of our assumptions, the
equations and boundary conditions for the velocity and
temperature in the spherical coordinate system are writ-
ten as [14, 15]

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Here, 

 

q

 

i

 

(

 

r

 

, 

 

Θ

 

) is the density of heat sources nonuni-
formly distributed in the drop. Specifically, if the drop
is heated by absorbing electromagnetic radiation, the
nonuniformity depends on the optical constants of the
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drop (mi = ni + iai, where mi, ni, and ai are the complex
refractive index, refractive index, and the absorption
coefficient of the drop, respectively) and its diffraction
parameter xd = 2πR/λ (λ is the wavelength). The expres-
sion for the radiation energy density converted to heat
in the drop can be represented in the form [16]

where I is the incident radiation intensity, Bk (k = e, i) is
a coordinate-dependent function calculated by the Mie
theory.

The results of numerical calculation for the Bk distri-
bution in the case of water drops are given in [16]. They
show that the nonuniformity of the absorbed energy
distribution in a water drop increases with its radius.
The nonuniformity is the greatest in the direction of
radiation propagation.

qi

4πRniai

ne

-------------------IBi,=

Table 1.

Glycerol: A = 17.29, F1 = –1.228, F2 = 7.022, T∞ = 303 K

T, °C µcal, Pa s µexp, Pa s

30 0.600000 0.600 0.00

40 0.327979 0.330 0.61

50 0.182001 0.180 1.11

60 0.102619 0.102 0.60

70 0.058797 0.059 0.34

80 0.034212 0.035 2.25

90 0.020189 0.021 3.86

Note: µcal; dynamic viscosity calculated by formula (1); µexp,
experimental value.

µexp µexp–

µexp
----------------------------100%

Table 2.

Water: A = 5.779, F1 = –2.318, F2 = 9.118, T∞ = 273 K

T, °C µcal, Pa s µexp, Pa s

0 0.0017525 0.0017525 0.00

10 0.0013151 0.0012992 1.22

20 0.0010089 0.0010015 0.74

30 0.0007943 0.0007971 0.35

40 0.0006433 0.0006513 1.22

50 0.0005359 0.0005441 1.51

60 0.0004581 0.0004630 1.06

70 0.0004002 0.0004005 0.07

80 0.0003556 0.0003509 1.35

90 0.0003199 0.0003113 2.76

µexp µexp–

µexp
----------------------------100%
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Boundary conditions (6) on the surface of the drop
(r = R) include the impermeability condition for the
velocity normal components, equality of the tempera-
tures, heat flux continuity, equality of the shear veloci-
ties at the inner and outer surfaces of the drop, and con-
tinuity of the shear components of the stress tensor.

Away from the drop (r  ∞), boundary conditions
(7) are valid, while the finiteness of the physical quan-
tities characterizing the drop at r  0 is included in
(8).

The decisive parameters of the problem are the
material constants ρe, µ∞, λe, and ce, as well as R, |∇ T |,
T∞, and U, which remain constant during the motion of
the spherical drop. With these parameters, one can
compose a three-dimensional combination including
ε = R|∇ T |/T∞ � 1 (this parameter characterizes a tem-
perature difference within the drop), as well as the
Peclet and Reynolds numbers.

We will make Eqs. (2)–(5) and boundary conditions
(6)–(8) dimensionless by introducing the dimension-
less velocity, temperature, and pressure: Vk = Uk/U, tk =
Tk/T∞, and pk = Pk/P∞. Here, the radius of the drop R,
temperature T∞, pressure P∞, and velocity U are used as
units of measure of distance, temperature, pressure, and
velocity, respectively (U ~ |µ∞|∇ T ||/(ρeT∞)).

At ε � 1, a solution to the equations of hydrodynam-
ics should be sought in the form

(9)

The form of boundary conditions (6)–(8) indicates
that an expression for the velocity components Vr and
VΘ is sought as the expansion in Legendre and Gegen-
bauer polynomials. The force acting on the drop is
found by integrating the stress tensor over its surface.
Having regard for the properties of Legendre and
Gegenbauer polynomials, we can assume that this force
depends largely on the first terms of the expansions;
therefore,

(10)

where G(y) and g(y) are arbitrary functions depending
on the dimensionless radial coordinate y = r/R.

When studying the motion of nonuniformly heated
drops under an external temperature gradient in a vis-
cous medium, one should take into account the temper-
ature dependences of both the dynamic viscosity coef-
ficient and the surface tension coefficient. This is
because the density qi of heat sources in the drop is non-
uniform. In this work, the surface tension coefficient is
taken to be an arbitrary function of temperature. More-
over, for the first time, an attempt is made to take into
consideration the effect of motion of the medium on the
force and velocity of the thermocapillary drift of a
heated drop in a viscous liquid. Therefore, final formu-
las are of general character and are valid for any tem-

V V 0( ) εV 1( ) …,+ +=

p p 0( ) εp 1( ) …, t+ + t 0( ) εt 1( ) ….+ += =

Vr G y( ) Θ, VΘcos g y( ) Θ,sin–= =

perature difference between the surface of the drop and
regions away from it.

TEMPERATURE FIELDS INSIDE AND OUTSIDE 
A HEATED DROP

When finding the force acting on a nonuniformly
heated drop and its velocity, we will consider only first-
order corrections. To find them, it is necessary to know
temperature fields inside and outside the drop, i.e., to
solve Eqs. (4) and (5) with appropriate boundary condi-
tions. The dimensionless equations of heat conduction
have the form

(11)

(12)

(13)

Here, Pr∞ = µ∞ce/λe is the Prandtl number, β = χe/χi, χ
is the thermal diffusivity, and Q = –qiR2/(λiT∞). Substi-
tuting (9) into Eqs. (11) and (2), we arrive at the follow-
ing set of equations:

zeroth-order approximation (ε = 0),

(14)

(15)

first-order approximation (~ε),

(16)

(17)

εPr∞ Ve∇( )te ∆te,=

εPr∞β Vi∇( )ti Q+ ∆ti,=

y 1, ti te, λ e

∂te

∂y
------ λ i

∂ti

∂y
------,= = =

y ∞, te 1 εy Θ,cos+

y 0, ti ∞.<

∆te
0( ) 0,=

∆ti
0( ) Q0,=

y 1, te
0( ) ti

0( ), λ e

∂te
0( )

∂y
---------- λ i

∂ti
0( )

∂y
----------,= = =

y ∞, te
0( ) 1,

y 0, ti
0( ) ∞.<

Pr∞ Br
e∂te

0( )

∂y
----------

VΘ
e

y
-------

∂te
0( )

∂Θ
----------+ 

  ∆te
1( ),=

Pr∞β Vr
e∂te

0( )

∂y
----------

VΘ
e

y
-------

∂te
0( )

∂Θ
----------+ 

  Q1+ ∆ti
1( ),=

y 1, ti
1( ) te

1( ), λ i

∂ti
1( )

∂y
---------- λ e

∂te
1( )

∂y
----------,= = =

y ∞, te
1( ) y Θ,cos

y 0, ti
1( ) ∞.<



TECHNICAL PHYSICS      Vol. 47      No. 11      2002

ON THE THERMOPHORETIC MOTION OF A HEATED SPHERICAL DROP 1383

When deriving the equation for the temperature dis-
tribution inside the drop, we assumed that

where

Let us find the zeroth-order approximations. The
general solutions to (14) and (15) have the form

(18)

(19)

where

In (19), integration is over the entire volume of the
drop. The constants of integration γ, Γn, and B0 are
determined by substituting (18) and (19) into the
related boundary condition. After the substitution, we
find that

Γn = 0 at n ≥ 1, ts = Ts/T∞. Ts is the mean temperature on
the surface of the drop given by

(20)

In (20), integration is also over the entire volume of
the drop.

For λe < λi, we can neglect the Θ dependence of the
dynamic viscosity coefficient in the drop–liquid
medium system and assume that the viscosity depends

only on the temperature (y); i.e., µe(te) = µe( ).
With this in mind, expression (1) takes the form

(21)

Formula (21) will subsequently be used for finding
the velocity and pressure fields in the vicinity of the
heated drop.
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Now let us find the first-order approximations. Sub-
stituting (18) and (19) into (16) and (17), we come to

(22)

(23)

where ω = Pr∞γ.

From (22) and (23), it follows that one must first
solve the hydrodynamic problem, i.e., determine the
velocity fields inside and outside the drop, in order to

find  and .

DETERMINATION OF THE DRAG FORCE

Substituting (22) into the equations of hydrodynam-
ics, taking into account (10), and separating the vari-
ables, we come to an equation similar to that obtained
in [17]. Eventually we have the following expressions
for the components of the mass velocity and pressure
that satisfy boundary conditions (7) and (8):
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sn = AFn – 1 – nFn – Fk, F0 = 1, and Fn = 0 at

n < 0. In (26), , , and  are the first-, second-,
and third-order derivatives of the associated functions
with respect to y (k = 1, 2).

The coefficients  and  are found from the
recurrent relations

(27)

(28)

Upon calculating the coefficients  and  by
formulas (27) and (28), it should be taken into account
that

Substituting (24) into (22), we have for 
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Substituting (30) into (29), we check that the vari-

ables are separable; then, for , we have
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where

is the dipole moment of the heat source density.
The constants of integration Γ and B are found from

the boundary conditions on the surface (the equality of
the temperatures and fluxes). Specifically,

where δ = 1 + 2(λe/λi) and  and  are the first deriv-
atives of the functions τ1 and τ2 with respect to y.

Thus, we determined the temperature fields inside
and outside the drop in the first approximation in ε.
Now, the constants of integration A1, A2, A3, and A4
entering into expressions (24) and (25) can be found
from the boundary conditions for the velocity compo-
nents on the surface of the drop.

Below, we give the coefficient A2 in explicit form,
since the total force acting on the drop is expressed
through it:
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The force acting on the drop is found by integrating
the stress tensor over its surface [18]:

(36)

where 

Substituting expressions (24) into (36) yields after
integration

(37)

In view of the explicit form of A2, the total force act-
ing on a heated drop subjected to an external tempera-
ture gradient is the additive sum of the viscous force Fµ
of the medium, thermophoretic force Fth, force Fq pro-
portional to the dipole moment of the density of heat
sources nonuniformly distributed in the bulk of the
drop, and force Fm due to the motion of the medium
(i.e., the force including convective terms in the heat
conduction equation):

(38)

where Fµ = –6πRµ∞Ufµnz, Fth = –6πRµ∞fthnz, Fq =
−6πRµ∞fqJnz, and Fd = –6πRµ∞fmnz.

The coefficients fµ, tth, fq, and fm can be estimated
from the expressions
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In the expressions for the coefficients fµ, tth, fq, and
fm, the index s refers to the quantities taken at the mean
surface temperature Ts of the drop, which is determined

from (20), and the parameters N1–N4, τ1, τ2, , , G1,

and G2 are taken at y = 1 (N4 = 2  + , N3 = – ,

N2 = [G2(2  + ) – G1(2  + )], and N1 =

G1  – G2 ).

Equating the total force to zero, we obtain an
expression for the directed velocity of the drop in a
given external temperature gradient:

(39)

where Uth = hth, Uq = hqJ, and Um = hm (hth = fth/fµ, hq =
fq/fµ, and hm = fm/fµ).

If the drop is heated only slightly, that is, its mean
surface temperature is close to the ambient temperature
at infinity (γ  0), the temperature dependence of the
viscosity coefficient can be neglected; then, G1 = 1,

 = –3,  = 12, G2 = 1,  = –1,  = 2, N1 = 2,

N2 = 6, N3 = 3, N4 = 6, τ1 = –1/4,  = 3/4, τ2 = 1/2, and

 = –1/2, and formulas (38) and (39) pass to expres-
sions well-known from the literature [1–6].

If the distribution of heat sources over the volume of
the heated drop is known, formulas (38) and (39) allow
one to take into account (1) the effect of the motion of
the medium on the drag force acting on the drop and (2)
the effect of drop surface heating on the thermocapil-
lary force and velocity for arbitrary temperature differ-
ences between the surface and regions away from the
drop. These formulas also account for the exponential
temperature dependence of the viscosity under an
external temperature gradient. Emphasize once again
that they are of general character.

These formulas imply that the magnitude and the
direction of the force F(1) and velocity U(1) are also
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affected by the direction of the dipole moment of the

heat source density zdV. If, for example, the drop

heats up, absorbing electromagnetic energy, the dipole
moment can be both negative (a major part of the ther-
mal energy is released in that side of the drop facing the
radiation) and positive (a major part of the thermal
energy is released in the opposite side), depending on
the optical properties of the drop. Note that the surface
tension decreases with temperature for most liquids,

i.e., ∂σ/∂ti < 0, and that the value of zdV may be

both positive and negative. Accordingly, the magnitude
and the direction of the force F(1) and velocity U(1) vary.

In addition, these formulas suggest that the forced
F(1) and the velocity U(1) also depend significantly on
the thermal conductivity of the drop. At λi approaching
infinity, F(1) and U(1) tend to zero with the dipole
moment of the heat source density fixed.

For µi  ∞, the above formulas can be used for
estimating the force and the velocity of a hard nonuni-
formly heated particle in a viscous liquid where a con-
stant temperature gradient is maintained.

The figure illustrates the effect of heating the sur-
face of the drop on its drift velocity. The curves relate
the function ϕ = hth/  to the mean surface

temperature Ts of the drop. Estimates were obtained for
mercury drops suspended in water at T∞ = 273 K and
R = 15 µm (∂σ/∂T = –2 × 10–4 N/mK, Pr∞ = 12.99). The
value of the function ϕ* was estimated by formula (39)
for a small temperature difference (γ  0), but the
molecular transfer coefficients were taken at the mean
surface temperature Ts.

To estimate the contribution of the motion of the
medium to the thermocapillary drift of the drop, it is
necessary to clarify the nature of the heat sources.
Knowing their nature, one can find an expression for
the dipole moment of the heat source density. To ana-
lyze the situation qualitatively, let us consider the sim-
plest case. We assume that the drop heats up, absorbing
electromagnetic radiation as a black body. Under these
conditions, absorption takes place in a thin layer of
thickness δR � R adjacent to the heated part of the
drop. In this case, the heat source density within a layer
of thickness δR is given by

(40)

where I is the incident radiation intensity. It is related to
the mean relative surface temperature of the drop as
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In view of (40), the integrals entering into the
expression for the force acting on the heated drop and
the drift velocity are calculated directly:

Accordingly, formulas (38) and (39) can be repre-
sented in a more compact form:

where

When deriving formulas (41), we took into consid-
eration that the thermal creep coefficient is very small
[3]; therefore, it was omitted in numerical calculations.
If the motion of the environment is not taken into
account (ω = 0),

(41)

where 

Formula (42) lacks the terms responsible for the
motion of the medium (convective terms in the heat
conduction equation) unlike (41). The convective term
depends on the mean surface temperature and the
Prandtl number (it is proportional to the Prandtl number
times the relative temperature difference between the
surface of the drop and regions away from it). There-
fore, if the temperature difference is large and the
Prandtl number is high (which is a possibility in liq-
uids), convective terms in the heat conduction equation
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may change essentially the qualitative picture of the
thermocapillary drift of the drop. In gases, the consid-
eration of the environment motion cannot affect the
drift of the drop significantly, because the Prandtl num-
ber in gases is about unity. If the temperature difference
is small (γ  0), the motion of the surrounding
medium should be taken into account when the drop
drifts in viscous liquids with a high Prandtl number.

Formulas for the motion of a hard spherical particle
can be obtained in a similar way.

To illustrate the contribution of the motion of the
medium to the force and velocity of the thermocapillary
drift of the heated drop, Tables 3 and 4 summarize the
values of the functions fph = fph/  and hph =

hph/ , respectively. The estimates were made

for mercury drops suspended in water at T∞ = 273 K.

The values of  and  were estimated from formu-
las (41) for a small temperature difference (γ  0),
but the molecular transport coefficients were taken at
the mean surface temperature Ts of the drop.

f ph Ts 273 K=

hph Ts 273 K=

f ph
av hph

av

Table 3

Ts, °C fph

0 1 1

10 0.75679462 1.13172965

20 0.55865389 1.25217591

30 0.40612812 1.35890535

40 0.29192483 1.44815402

50 0.20865530 1.52363269

60 0.14791875 1.58086862

70 0.10410262 1.62387314

80 0.07247662 1.65233041

90 0.04977532 1.66842426

f ph
av

Table 4

Ts, °C hph

0 1 1

10 1.04610555 1.1018381

20 1.06591031 1.1918477

30 1.06609551 1.2690664

40 1.04899473 1.3307655

50 1.01989975 1.3807801

60 0.97702898 1.4155379

70 0.92304912 1.4387383

80 0.85740504 1.4502438

90 0.78130662 1.4518747

hph
av
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DISTORTION OF THE SURFACE SHAPE

The shape of the drop is unknown and should be
found from the solution; therefore, boundary condi-
tions (5)–(7) are set for a boundary of unknown shape.
Since we restrict our analysis by first-order corrections,

(42)

where σ0 is the zeroth-order term in the expansion of
the function σ(x) in Legendre polynomials Pn(x) (x =
cosΘ).

The shape of the drop is sought in the form [14]

(43)

Let us expand the quantities σ(Θ) and ξ(Θ) in Leg-
endre polynomials:

(44)

From the constancy condition for the volume of the
drop, it follows that ξ0 = 0. Bearing in mind that the ori-
gin of the coordinate system is placed at the center of
mass of the heated particle, we have

(45)

hence,

(46)

When solving the problem, we did not consider the
boundary condition for the normal components of the
stress tensor. Up to terms proportional to ε, the bound-
ary condition for the normal stresses on the surface
takes the form [17]

(47)

Here,

R1 and R2 are the principal radii of curvature of the
drop; and H is the mean curvature of the surface, which
in the axisymmetric case is given by [17]

(48)

In view of (45) and (47), we obtain expression (49)
in the form

(49)

Thus, as follows from (48) with regard for (50), a
nonuniformly heated drop, when moving, retains the
spherical shape within the approximation adopted in
this work.
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