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Abstract— The steady motion of a nonuniformly heated spherical aerosol particle through a viscous gaseous 
medium  is theoretically studied in the Stokes approximation. It is assumed that the mean temperature of the 
particle surface may differ appreciably from the ambient temperature. The solution of gasdynamic equations 
yields an analytical expression for the drag of the medium and the gravitational fall velocity of the nonuni­
formly heated spherical solid particle with allowance for the temperature dependence of the density of the 
medium  and molecular transfer coefficients (viscosity and thermal conductivity). Numerical estimates show 
that heating of the particle surface considerably influences the drag force and gravitational fall velocity.

INTRODUCTION
Aerosol particles entering into an aerodispersed 

system may experience forces of various kinds. The 
gravitational motion, i.e., the motion of aerosol parti­
cles in the gravity field due to the difference between 
the specific weights of the particles and ambient 
medium, is the most common one. The gravitational 
motion is fundamental for many operating proce­
dures, such as floatation, sizing analysis of aerodis­
persed systems, and fine gas cleaning.

When designing experimental setups in which the 
directional motion of particles must be provided, 
developing techniques for fine cleaning of gases from 
aerosol particles, mathematically simulating the pre­
cipitation of particles in a plane-parallel channel kept 
at different temperatures, etc., as well as because of the 
deteriorating ecological situation, one should know 
the drag of the ambient medium to the motion of par­
ticles.

The drag can be effectively controlled by heating 
the particle surface, e.g., using laser radiation. In this 
case, particles move under the conditions of consider­
able relative temperature difference in their vicinity. 
The relative temperature difference is the difference 
between the temperatures near and far from the parti­
cle surface divided by the latter. It is considered tangi­
ble if (tiS -  /„ ) / /„  ~ 0 ( 1 ), where tis is the mean tem­
perature of the particle surface and teoa is the tempera­
ture of the gaseous medium far from the particle.

The heated surface of an aerosol particle consider­
ably influences the thermophysical characteristics of 
the gaseous environment and eventually the drag.

The problem of drag to the motion of a heated solid 
particle was first solved in [1]. However, the analytical 
results obtained in [ 1 ] are inapplicable to large tem­
perature differences, because the method selected for 
solving gasdynamic equations turned out to be inap­
propriate. In addition, the authors of [1] considered 
only the linear temperature dependences of the ther­
mal conductivity and dynamic viscosity.

Molecular transfer coefficients in a gas are known 
to depend on temperature by a power law [2]. With 
regard to such a dependence, the problem of drag to 
the motion of a heated spherical particle was first ana­
lytically solved in [3—6]. The formulas derived in those 
works enable one to make estimates at large tempera­
ture differences. In [3—6], the equations of gas 
dynamics were solved with a method proposed by 
Shchukin, in which they are expanded into power 
series in parameter l(y) = F0/(y + T0), where y0  =
tls+a —\ , t s = T S/ T em, and y = r/R is the dimensionless 
radial coordinate.

In a number of works, e.g., in [7], it was assumed 
that the Barnett temperature stresses should also be 
taken into consideration in solving problems with 
nonisothermal flows. In [8 ], the problem of flow about 
a strongly heated sphere is solved with allowance for 
the Barnett stresses. The same problem was analyti­
cally solved in [9]. The Barnett stresses may strongly 
influence the motion of particles at Mach numbers 
M —► 0 [8 ]. In this paper, we consider the motion of 
a particle at sufficiently small Knudsen numbers and 
moderate Mach numbers. Under these conditions, the 
temperature stresses may be neglected even at a tem­
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perature difference of the order of unity. It should be 
noted that in works published earlier solutions to dif­
ferential equations describing the velocity and pres­
sure fields were sought in the form of power series by 
the order reduction method, which yielded awkward 
final expressions.

In this work, a solution to equations of gas dynam­
ics is sought immediately in the form of generalized 
power series. Such an approach made it possible to sig­
nificantly simplify the final expressions.

1. STATEMENT OF THE PROBLEM
The object of consideration is the gravitational 

motion of a spherical solid particle in a viscous 
nonisothermal gaseous medium. Inside the particle, 
heat sources (heat sinks) with density c/, are nonuni- 
formly distributed.

In the theoretical description of the flow about an 
aerosol particle, we will assume that all processes in 
the particle—gas system are quasi-stationary because 
of a short thermal relaxation time of the system. The 
particle moves at Peclet and Reynolds numbers that 
are much less than unity. Since it is heated, one should 
take into account the temperature dependences of the 
molecular transfer coefficients (viscosity and thermal 
conductivity) and density of the gaseous medium. 
Here, we use the power form of these dependences [2],

{ T V  f  t
|ie = n J  T^-l , K  = K  'T T

dxh Qxj
'd_u; + d_ul_28 d j ç
dxk dxj 3 ]kdxm, 

div(p eUe) = 0;

+ F„
(1.1)

related to the center of mass of the particle. In this 
case, the problem is reduced to the case of a plane- 
parallel flow with velocity U.y ( \J.y || OZ) about a spher­
ical particle.

The problem stated by ( 1.1 ) and ( 1.2) is solved with 
boundary conditions that in the spherical coordinate 
system (r, 0 , cp) are given by

r = R, lfr = 0, lfQ = 0, Te = T„

. dTe dTt * * (L3>
K ^ r  = -  Co);dr dr

00 , U, Umcos0e,.- C/^sinOeg, 

T  —-  T  •■ i -*■ e eco >

T: ^ OO.0 ,

(1.4)

(1.5)

( 0  < a, p < 1 ), 
where | =  |ae(TeJ ;  / .„  = Xe( Te,)\ \xe and Xe are the 
dynamic viscosity and thermal conductivity of the gas­
eous medium, respectively; and Te is the gas (environ­
mental) temperature. The particle is assumed to be 
uniform in composition and large (Knudsen number 
Kn = / . /R <§0 .0 1 , where /. is the mean free path length 
of gas molecules). The phase transition on the parti­
cle’s surface is absent. The radius of the particle is suf­
ficiently small, so that the influence of gravitational 
convection on the temperature distribution can be 
neglected.

In the Stokes approximation with regard to the 
assumptions formulated above, the equations for mass 
velocity Ue, pressure Pe, and temperature T  outside 
and inside the heated particle are written in the form 
[10- 12]

Here, lfr and lfQ are, respectively, the radial and tan­
gential components of mass velocity Ue\ ct0  is the Ste­
fan—Boltzmann constant; ct, is the total emissivity; 
£ 4  = |Uoo|, Uoo is the velocity of the incident flow, which 
is determined from the vanishing condition for the
total force acting on the particle; /.,■ = /.,v /■"; /.,v = 
/.,■( Te/); tj = 7 — 1 < co < 1; and e (. and ee are the 
unit vectors of the spherical coordinate system. Here­
inafter, subscript “e” refers to the gas environment and 
subscript oo refers to physical quantities characterizing 
the environment in the unperturbed flow.

Boundary conditions (1.3) on the surface of a drop 
include the impermeability conditions for the normal 
and tangential components of the mass velocity, equal­
ity condition for the temperatures, and continuity 
conditions for heat fluxes. Away from the drop, condi­
tions (1.4) are valid and the finiteness of physical 
quantities is taken into account in (1.5).

The force with which the flow acts on the particle is 
given by [9, 10]

FT

J (-  i>,cose + <r„cose -  <7,8 s in e y 2 sine</e<*p.
(1.6)

(S)
Here,

d iv (leV r e) = 0, div(A,(-V Tj) = - q t. (1.2)
To close this set of equations, it is necessary to add 

the equation of state.
It is convenient to consider the gravitational 

motion of the heated particle in the coordinate system

dlfr 2  TJ 
Vrr = H„l2— -  -di  v U t

rB v dr r 50 r
are the components of the total stress tensor in the 
spherical coordinate system. The incident flow has 
only a perturbing effect; therefore, a solution to the set 
of equations of hydrodynamics and heat transfer 
should be sought in the form of an expansion in small 
parameter s = Re, = {pexUxR)/\iex.

The form of boundary conditions (1.3)—(1.5) 
makes it possible to seek expressions for the velocity,
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pressure, and temperature fields by the method of sep­
aration of variables,

lfr(r,Q) = UæG(y) cosQ,

ir&{r,Q) = -U mg{y) sin0, d-7)

Pe(r,Q) = h(y) cosG,
where G(y), g(y), and h(y) are arbitrary functions 
depending on coordinate y, and then reduce the set of 
equations for the perturbed quantities to a set of ordi­
nary differential equations in functions G(y), g(y), 
and h(y).

2. VELOCITY AND TEMPERATURE FIELDS.
GRAVITATIONAL FALL VELOCITY 

OF THE PARTICLE
To find the force acting on a uniformly heated 

aerosol particle and the velocity of its gravitational fall, 
it is necessary to know the temperature, velocity, and 
pressure distributions in its vicinity. A general solution 
to the heat conduction equation that satisfies the cor­
responding boundary conditions has the form

/  T-\l/(l + a)
Uy,Q) = U y )  = ( i  + -° l; J (2.1)

h(y, 0) = t M  
1 1

B0 + — + - IVo^y- 'dy\ y y J  J v

1/(1 + CD) (2.2)

y J J y
y y

Here, B0 and D{) are constants determined from 
boundary conditions (1.3) on the particle’s surface,

R 2 I + co 
Vo = ~ ^ ~ y2 K TP !

^qtdx,

x  =  cosG, T0  =  t+es — 1 is a dimensionless parameter 
characterizing the heating of the particle’s surface,
and teS = TeS/ T erXl.

The mean value of temperature hs on the particle’s 
surface is found by solving the set of transcendental 
equations

hs ~ hs>

P  X,eS

1  + aX hs -
R

iS 3 K s T (

R f  4  (2-3)
/„-(ToCT!—

iS

where XeS — XerMteS, XiS — XiœtiS, tiS — t,I rO ly= l) l eS

‘Ay  h hs= Tis/Tea0, / 0  = i j ÿ ,  (r, Q)dV, V =  I  k R \  and

l(S) =
i + r ,

. In (2.3), integration is over the particle’s

volume.

Subject to (2.1), the expression for the dynamic 
viscosity can be represented in the form

He = V-er/eO- (2.4)
Formula (2.4) will be subsequently used to find the 

velocity and pressure fields in the vicinity of the heated 
drop.

Having substituted (2.4) and (1.7) into the Navier— 
Stokes equation linearized in velocity and having sep­
arated the variables, we obtain an inhomogeneous dif­
ferential equation in function G(y),

ictG , , n d2G f , , , fi.dGy — +y  (4 + YiO—- - 3 ^ ( 4  + y2 / - y 3/ ) — 
dy dy dt

- ( 2 - l ) y / G  = - 4 ,  
yteO

(2.5)

where

Yi =
1  + a ’ J 2 = + P

1  + a ’ Y 3 _ 2 + 2 a  -  [3 
( 1  + a ) 2

D = const, l(y) =
y + r 0

A solution to Eq. (2.5) will be sought in the form of 
a generalized power series [13, 14]. First, let us find a 
solution to homogeneous equation (2.5),

y
îd^G , 2f. i\d2G f,  , , fi.dG

- + j  (4 + YiO—  -> ’(4 + Y2 /-Y 3/ ) —
dy dy (2.6)

-  (2 -  f )j jl  G = 0.
For homogeneous equation (2.6), the point y  =  0 is 

a regular point [ 13], so that its solution is sought in the 
form

G = y PY J CJn, C0* 0 . (2.7)

Substituting (2.7) into (2.6) yields the determining 
equation p(p + 3)(p — 2) = 0, the roots of which are 
Pj = —3, p3  = 0 , and p2  = 2 .

The largest of the roots corresponds to the solution

Gi = C0  = 1.
^  „ = 0

The second solution to homogeneous equation (2.6), 
which satisfies the finiteness condition at y  —► 00, and a 
particular solution to Eq. (2.5) are sought in the form

n = 0 n = 0

G,
CO CO

Cl f
n = 0 n = 0

respectively.
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Coefficients (n > 1), C?'J) (n> 4), and C('2) (n > 3) 
are determined by the method of undetermined coef­
ficients,

( f ?  =
1

n(n + 3 )(n + 5)
{ [(« -  1)(3« + 13« + 8 )

+ YiO* + 2)(« + 3) + y 2(n + 2)\Cin1l l 

-  [(« -  1 ){n -  2)(3n + 5) + 2Yi(n2 -  4) + y2(n ~ 2)

+  Y 3 ( «  + 3)]C ^ 2

+ ( n - 2 ) [ ( n -  l ) ( « - 3 )  + Y i(« -3 ) + Y3 ]C ^ 3},

C(2) = 1
(n + 1  )(n + 3)(n -  2 )

x j [ ( « -  1)(3« 2  + « - 6 ) + Yi«(«+ 1) + «Y2 ]c «2-i

-  [y3(« + 1 ) + (« -  1  )(« -  2)(3« -  1 ) + 2 Yin(n -  2 ) 

+ Y2(* -  2) ] c « 2- 2  + (« -  2 )[(« -  1 ) (n -  3) + y3

n - 2

+ Yi(w _ 3) ]C„ 3 + —| ^  (« -  £ -  l)Afc 
r  n

Ci3) =

-(2) , ®2 ’

Ofc = 0

œ 0!
rt!(co0 -rt)! I’

1
«(« + 2)(n -  3)

x \ ( n -  l)[3« 2 - 5 « - 4  +Yi« +Y2 ]c «3-i

-  [(« -  l)(n  -  2)(3« -  4) + 2yi(« -  1)(« -  2)

+ Ji(n -  2) + «Y3 ]C,i3- 2  + (« -  2)[(« -  1)(« -  3)

+  Y i ( « - 3)  +  Y 3] C ^ 3

+ — 3 5 > - * - 2 ) ( * - * - l ) A *  ,
2 r Ofc = o

Ak = (3k2+ l6 k  + 15)Ci1)

-  { { k -  1)(6 k  + 13) + Yl(2 k  + 5) + Y î ) ^ !

+ ( 3 (fc_ i ) (^ _  2) + 2 Yl(fc- 2 ) + Y3 )C i-2-

To calculate coefficients , Ĉ 2), and CI'J) using 
recurrent formulas, it is necessary to take into account 
that

c(01) = 1 , c[r° = 1 ,

c f  = 1 ,

C(!3) = 0,

fÜi = _I1(10 + 3yi + Y2 ),2 r 3 60^
C<2) = 1, c f  = 1,

CO_2

T - 2 15■ J(2Yi + Y2  + 6<a0)(4 + 3Yl + y2) + 3 Y3

+ 3<a0 (<a0 - l ) ] ,  C(i2) = -i(2Y! + Y2  + 6 (Oo)>

(On = P
1 + a

Also, C ^  (A: = 1,2,3) equal zero a t « < 0.

Function g(y) entering into the expression for Jf% is 
related to function G(y) by a functional relationship 
that is obtained from the continuity equation (the sec­
ond equation in ( 1 . 1 )) with regard to the temperature 
dependence of the density of the gaseous medium 
(Pe l/4o)>

g(y) = G(y)+ l- y ( ^ - / G ( y ) ) ,

1  dte o I^  w  _
te0dy j ( l  + a )

Thus, for the components of the mass velocity, we 
have

lfr = UmcosQ{AiGi + A 2G2 +G^), 

Vq = - U a,s inQ(AlG4 + A 2G5 + G6),

(2.8)

(2.9)
where 

Gk = 11 + I
, jGk-i  + \ y G h  (k = 4,5,6) ,  

2 ( 1  + a y  2

and d \ , (72 , and (7? are the first derivatives of func­
tions Gh G2, and G3 with respect to y.

Constants of integration A 1 and A2 are determined 
by substituting expressions (2.8) and (2.9) into the cor­
responding boundary conditions on the particle’s sur­
face. Having determined them and having integrated 
( 1 .6 ), we arrive at a formula for the drag of the medium 
to a heated spherical solid particle with nonuniformly 
distributed thermal sources with density c/, inside,

F = 6nR\xeJ  Uxnv (2 . 10)

where ^  = G.G1, -  G2G[, N 2\y = x =

(71 G\ — G3G{, and n7 is the unit vector along the z  axis.
A spherical particle falling under the action of the 

gravity force in a viscous medium starts to move with a 
constant velocity, since the gravity force is counterbal-
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Fig. 1. Function /„ vs. incident radiation intensity /0 for 
a  = p = (7) 0.5, (2) 0.7, and (3) 1.0.

TiS, K

Fig. 2. Function y j  vs. mean temperature T ^of the parti­
cle’s surface for a  = p = (7) 0.5, (2) 0.7, and (3) 1.0.

anced by hydrodynamic forces. With regard to the 
buoyancy force, the gravity force acting on a particle 
takes the form

F = (P (- P e) # ^ 3n „

where g is the free-fall acceleration. Here, subscript 
“i” marks the particle.

Equating expression (2.10) to (2.11), we obtain a 
formula for the gravitational fall velocity of a nonuni- 
formly heated spherical particle (analogue of the 
Stokes formula),

U„ = h „ nj h „  =  - R 2— — — g

9 I W ,
H Z (2 . 12)

3. RESULTS AND ANALYSIS
Thus, formulas (2.10) and (2.11) enable us to eval­

uate the force acting on a nonuniformly heated sphere 
and the velocity of its gravitational fall with allowance 
for the temperature dependences of the density of the 
gaseous medium and the molecular transfer coeffi­
cients (viscosity and thermal conductivity) at an arbi­
trary difference between the temperatures on and far 
from the particle’s surface.

If the heating of the particle’s surface is weak, i.e., 
if the mean temperature of the surface is close to the 
ambient temperature far from it ( r 0 —► 0), the tem­
perature dependences of the density and molecular 
transfer coefficients can be neglected; then, Gx = 1 ,
G\ = -3 ,  G2 = 1, G\ = -1 ,  G3 = 1, ( 7 3  = 0, Ni = 2, and 
N 2 = 3. In this case, formulas (2.10) and (2.11) turn into 
the well-known Stokes expression for a sphere [11].

Constant T0  depends on mean relative surface tem­
perature teS, which, in the case of the nonuniformly 
heated surface, is determined by solving transcenden­
tal equation (2.3) and, consequently, depends on the

density of heat sources nonuniformly distributed over 
the particle’s volume. It then follows that functions Gx, 
G2, etc., also depend on the density of heat sources,

r 0(2 . 1 1 ) since they contain parameter / =
y + r 0

To estimate the contribution of internal heat 
sources (i.e., heating of the surface) to the gravita­
tional fall velocity of a spherical aerosol particle, let us 
consider the simplest case when the particle absorbs 
like a black body. In this case, absorption occurs in a 
thin layer of thickness 8R <§ R that adjoins the heated 
part of the surface. The density of heat sources inside 
a layer 8 R thick is given by

Qi(r, 0) =
COS0 ,

8R
R - 8 R < r < R

0, o < e <

where / 0  is the incident radiation intensity.

In this case, integral jyQidV is taken easily:

| ^ j d V  ~ 7iR2I0. Thus, setting the incident radiation
intensity, one can estimate the mean relative tempera­
ture of the particle’s surface by formula (2.3),

1/(1 + a)
[eS'

1 +  CX

4X T~1 'Voo goo
RI,

It is seen that the relative surface temperature of a 
spherical nonuniformly heated particle depends on its 
radius and the incident radiation intensity.

Curves depicted in Fig. 1 relate the values of 
function/^ on incident radiation intensity / 0, while those 
in Fig. 2 relate the values of function

hpix* = | j  2 7 3  k )
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with TiS. Numerical estimates were conducted for 
copper particles with a radius of 1 0 0  |im suspended in 
air under normal conditions. As seen in the curves, 
heating of the particle’s surface appreciably influences 
the drag to and velocity of the gravitation motion of 
the particle. These theoretical conclusions are con­
firmed by experimental data (see, for example, [15]).

CONCLUSIONS

The Stokes formula describing the steady gravita­
tional fall of a nonuniformly heated spherical solid 
particle in a viscous incompressible gas is generalized 
for the case of the temperature dependences of the 
ambient gas density and molecular transfer coeffi­
cients (viscosity and thermal conductivity) and an 
arbitrary difference between the temperatures on and 
away from the particle’s surface.
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