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INTRODUCTION

At present, there is no unified and generally accepted point of view on the construction of
the theory of boundary value problems for elliptic pseudodifferential equations on manifolds with
nonsmooth boundary [1–5]. The local principle is used by everyone, and disagreements begin
where the singularity of the boundary itself and the type of the local operator in the vicinity of
this singularity are described. Of course, this gives rise to different conditions for the Fredholm
property, and the results obtained under different initial conditions are incomparable. In this case,
such criteria as “visibility,” “applicability,” and “usefulness” probably come to the foreground. From
this point of view, in our opinion, the constructions of the present author considered earlier and
proposed in this paper are in no way inferior to other versions of the theory, but, on the contrary,
much better match the specified criteria.
The present work deals with rendering concrete some of the constructions carried out by the

present author to study the solvability of elliptic pseudodifferential equations and boundary value
problems in cones [6–17]. In a number of his studies, there is a certain transformation operator,
the knowledge of the explicit form of which makes it possible to write down the exact form of the
solution of a special boundary value problem. Here we will describe this operator for a circular cone
in the m-dimensional Euclidean space.

1. PRELIMINARIES. MODEL DOMAINS

By model (canonical) domains we mean special domains of the Euclidean space Rm. The first
model domain was the entire space Rm as a local model of a smooth compact manifold. The second
model domain is the half-space Rm

+ = {x ∈ Rm : x = (x1, . . . , xm), xm > 0}. In this case, it proved
possible to obtain exhaustive results on the statement and solvability of boundary value problems
for elliptic pseudodifferential equations on compact manifolds with smooth boundary [18], which
ended with the index theory [19]. Since then, the Rm

+ model has been “canonized” even for the
case of a nonsmooth boundary, and all local studies have been associated with the interpretation
of the conic model as the direct product B × R+, where B is the cone base. On this path, a large
number of interesting and impressive results [1–3], mostly of abstract and theoretical nature, were
obtained, in which the fundamental point was the identification of a local operator near a singular
point. As soon as a local description appeared, it became possible to study the Fredholm property
of boundary value problems, including index theorems.
The present author sticks to a different point of view on these issues, which he started to develop

in the 1990s [4, 5]. The simplest circular cone

Ca
+ = {x ∈ R

m : x = (x′, xm), xm > a|x′|, a > 0}
delivers a new type of singularity, irreducible to the case of half-space. As became clear later,
studying the solvability of pseudodifferential equations in such a cone is closely related to the
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multidimensional linear conjugation problem, which is one of the (rather many) versions of the
classical Riemann boundary value problem [20, p. 95; 21, p. 140]. The idea of multidimensional
factorization has enabled a complete description of the solvability pattern [4, p. 27; 5, p. 32] for the
model elliptic equation on the plane,

(Au)(x) = v(x), x ∈ Ca
+, (1)

where A is a pseudodifferential operator with symbol A(ξ) satisfying the condition
c1(1 + |ξ|)α ≤ |A(ξ)| ≤ c2(1 + |ξ|)α, c1, c2 = const , (2)

and a solution u is sought in the Sobolev–Slobodetskii space Hs(Ca
+).

By definition, the space Hs(Ca
+) consists of those generalized functions of the space Hs(Rm)

whose supports are contained in Ca
+ [18, p. 37]. The norm ‖ · ‖s in the space Hs(Ca

+) is induced by
the norm of the space Hs(Rm),

‖u‖s =
⎛
⎝ ∫

Rm

|ũ(ξ)|2(1 + |ξ|)2s dξ
⎞
⎠

1/2

,

where ũ is the Fourier transform of the function u; i.e.,

ũ(ξ) ≡ (Fu)(ξ) =

∫
Rm

eixξu(x) dx.

The right-hand side v of Eq. (1) is selected from the space Hs−α
0 (Ca

+), which consists of generalized
functions in S′(Ca

+) that admit continuation to the entire space Hs−α(Rm). The norm on the
space Hs−α

0 (Ca
+) is determined by the formula

‖v‖+s−α = inf ‖�v‖s−α,

where the infimum is taken over all continuations �. The symbol H̃s will stand for the Fourier
transform of the respective space Hs.
The model operator and the canonical domain arise when “freezing the coefficients” and “straight-

ening the boundary”; in the case of a cone, the latter implies that, in a neighborhood of the singular
point, the surface of the boundary neighborhood smoothly transforms into a conic surface. In this
case, to derive conditions for the original operator to be Fredholm, in accordance with the local prin-
ciple, it is necessary to describe conditions for the invertibility of the model operator in the canonical
domain. These issues were covered in the papers by the present author [6–10, 13–16]. All the con-
structions indicated in these papers contain some parameters that characterize the dimensions of
the cone. (For the cone Ca

+, this is the parameter a.) For example, the cone Ca
+ becomes a half-space

as a→ 0, while it degenerates into a ray as a→ +∞. This is obvious geometrically, but it remains
unclear how to define pseudodifferential operators on such limit structures and pose boundary value
problems for these operators. The present author undertook the first attempts to elucidate these
questions several years ago [11, 12, 17], with the motivation being the article [22], which sets forth
the theory of boundary value problems (for differential operators) on the corresponding manifolds.
Since there is no formula for the general solution in the multidimensional case, we consider here

some specific cones and, based on our theory of boundary value problems in cones [4, 5], describe the
solution of the special boundary value problem, as well provide an explicit formula for its solution.

2. EQUATION IN THE CONE, WAVE FACTORIZATION, AND GENERAL SOLUTION

To study the solvability of Eq. (1), we use the concept of wave factorization of an elliptic symbol.
Let us give the definition in a rather general form, because the results produced below can readily
be extended to more complicated singularities.
Let Cm−k be a convex cone lying in the real (m−k)-dimensional linear space and not containing

any straight line entirely. A radial tubular domain T (Cm−k) over the cone Cm−k[23, p. 206] is
a subset of the complex space Cm−k of the form

T (Cm−k) =
{
z ∈ C

m−k : z = x+ iy, x ∈ R
m−k, y ∈ Cm−k

}
.
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1326 VASIL’EV

The dual cone of the cone Cm−k is the cone [23, p. 257]

∗
C

m−k =
{
x ∈ R

m−k : x · y > 0, y ∈ Cm−k
}
.

For a vector ξ ∈ Rm, we set ξ = (ξ′, ξ′′), where ξ′ ∈ Rk and ξ′′ ∈ Rm−k.

Definition. For a function A(ξ) defined for almost all ξ ∈ Rm, the k-wave factorization with
respect to the cone Cm−k is its representation in the form of the product

A(ξ) = A �=(ξ)A=(ξ),

in which the factors A�=(ξ) and A=(ξ) satisfy the following conditions:
1. The functions A �=(ξ) and A=(ξ) are defined for all values of ξ ∈ Rm except maybe for points
belonging to the set Rk × ∂(

∗
Cm−k ∪ (− ∗

Cm−k)).
2. For almost all ξ′ ∈ Rk, the functions A�=(ξ) and A=(ξ) admit analytic continuation into the
radial tubular domains T (

∗
C m−k) and T (− ∗

C m−k), respectively, and in this case there exists
a κk ∈ R such that for each τ ∈ ∗

Cm−k one has the estimates

c1(1 + |ξ|+ |τ |)κk ≤ |A �=(ξ′, ξ′′ + iτ)| ≤ c4(1 + |ξ|+ |τ |)κk ,

c3(1 + |ξ|+ |τ |)α−κk ≤ |A=(ξ
′, ξ′′ − iτ)| ≤ c2(1 + |ξ|+ |τ |)α−κk ,

where c1, c2, c3, and c4 are positive constants.
The number κk is called the index of the k-wave factorization.
Let us start our consideration from the simplest cone Ca

+.
It was shown in the papers [4, 5] that the presence of a k-wave factorization for the symbol A(ξ)

allows one to completely describe the solvability pattern for Eq. (1). Obviously, for the cone Ca
+

one needs the presence of a 0-wave factorization or simply a wave factorization. In what follows, we
assume that such a factorization exists. (The examples and classes of symbols are given in [4, 5].)
A solution of Eq. (1) with right-hand side in Hs−α

0 (Ca
+) is sought in the Sobolev–Slobodetskii

space Hs(Ca
+) [4, 5]. Below, in the case under consideration, we prove a theorem that describes the

structure of solution, pose the boundary value problem, and find its solution.
The present paper treats only such equations (1) for which the index κ of the wave factorization

of their symbol A(ξ) with respect to the cone Ca
+ satisfies the condition κ − s = n+ δ, where n ∈ N

and |δ| < 1/2.
As before [6, 7], by Ta : Rm → Rm we denote the transformation that sends ∂Ca

+ into the
hyperplane xm = 0; i.e.,

t1 = x1, . . . , tm−1 = xm−1, tm = xm − a|x′|, x′ = (x1, . . . , xm−1).

We introduce the transformation operator

FTaF
−1 ≡ Va

and use it to describe the structure of the solution of Eq. (1).
We will also need the special multidimensional singular integral operator

(Gmu)(x) = am lim
τ→0+

∫
Rm

u(y′, ym) dy′ dym
(|x′ − y′|2 − a2(xm − ym + iτ)2)m/2

,

where am is a known constant whose explicit value is irrelevant; recall that this operator is a mul-
tidimensional analog of the Cauchy type integral, or, more precisely, the Hilbert transform, and it
is used to solve [4, 5] one of the versions of the multidimensional Riemann problem.
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Theorem 1. The general solution of Eq. (1) in terms of Fourier transforms is given by the
formula

ũ(ξ) = A−1
�= (ξ)Qn(ξ)GmQ

−1
n (ξ)A−1

= (ξ)�̃v(ξ) +A−1
�= (ξ)V−aF

(
n∑

k=1

ck(x
′)δ(k−1)(xm)

)
,

where ck(x
′) ∈ Hsk(Rm−1) are arbitrary functions, sk = s − κ + k − 1/2, k = 1, . . . , n, �v is

an arbitrary continuation of the function v to a function in Hs−α(Rm), and Qn(ξ) is an arbitrary
polynomial satisfying the condition

c1(1 + |ξ|)n ≤ Qn(ξ) ≤ c2(1 + |ξ|)n, c1, c2 = const . (3)

One has the a priori estimate

‖u‖s ≤ C
(‖v‖+s−α + [ck]sk

)
,

where [ · ]sk stands for the Hsk(Rm−1)-norm and C is a constant.
Proof. By �v we denote the continuation of the right-hand side v of Eq. (1) to a function

from Hs−α(Rm) and set
u−(x) = (�v)(x)− (Au)(x),

so that
u−(x) = 0, x /∈ Ca

+.

Then Eq. (1) is written in the form

(Au)(x) + u−(x) = (�v)(x), x ∈ R
m;

applying the Fourier transform to the latter, we obtain

A(ξ)ũ(ξ) + ũ−(ξ) = �̃v(ξ),

which, after wave factorization of the symbol, leads to the relation

A �=(ξ)ũ(ξ) +A−1
= (ξ)ũ−(ξ) = A−1

= (ξ)�̃v(ξ). (4)

According to our assumptions, the inclusion A−1
= (ξ)�̃v(ξ) ∈ H̃−n−δ(Rm) holds, because we have

s − κ − (κ − α) = s − κ = −n − δ. Choose an arbitrary polynomial Qn(ξ) of degree n satisfying
inequality (3) to arrive, after multiplying both sides of relation (4) by Q−1

n (ξ), at the relation

Q−1
n (ξ)A �=(ξ)ũ(ξ) +Q−1

n (ξ)A−1
= (ξ)ũ−(ξ) = Q−1

n (ξ)A−1
= (ξ)�̃v(ξ). (5)

It can be seen that Q−1
n (ξ)A−1

= (ξ)�̃v(ξ) ∈ H̃−δ(Rm), and consequently, we can write [4, 5]

Q−1
n (ξ)A−1

= (ξ)�̃v(ξ) = v+(ξ) = v−(ξ),

where
v+(ξ) = GmQ

−1
n (ξ)A−1

= (ξ)�̃v(ξ) and v−(ξ) = (I −Gm)Q
−1
n (ξ)A−1

= (ξ)�̃v(ξ),

with v+ ∈ H̃−δ(Ca
+), and v− ∈ H̃−δ(Rm \ Ca

+). Now we write relation (5) in the form

Q−1
n (ξ)A �=(ξ)ũ(ξ) +Q−1

n (ξ)A−1
= (ξ)ũ−(ξ) = v+(ξ) + v−(ξ)

and further
A �=(ξ)ũ(ξ)−Qn(ξ)v+(ξ) = Qn(ξ)v−(ξ)−A−1

= (ξ)ũ−(ξ). (6)

The following inclusions are obvious for the terms on the left-hand side in relation (6):

A �=(ξ)ũ(ξ) ∈ H̃s−κ(Ca
+) and Qn(ξ)v+(ξ) ∈ H̃−n−δ(Ca

+),

and since s−κ = −n− δ, we see that it belongs to the space H̃−n−δ(Ca
+). In a similar manner, we

verify that the right-hand side of relation (6) belongs to the space H̃−n−δ(Rm \ Ca
+).
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Let us apply the inverse Fourier transform to both sides of relation (6),

F−1(A�=(ξ)ũ(ξ)−Qn(ξ)v+(ξ)) = F−1(Qn(ξ)v−(ξ)−A−1
= (ξ)ũ−(ξ)). (7)

In this relation, the left-hand side belongs to the space H−n−δ(Ca
+) and the right-hand side, to the

space H−n−δ(Rm \ Ca
+), but the function satisfying both of these conditions can be only a (gen-

eralized) function concentrated on the surface of the cone Ca
+. If we now apply the operator Ta

to both sides of relation (7), then the aforementioned function will be concentrated on the hyper-
plane xm = 0. The form of such a function is well known [18, 24], and we obtain

TaF
−1(A�=(ξ)ũ(ξ)−Qn(ξ)v+(ξ)) =

n∑
k=1

ck(x
′)δ(k−1)(xm).

Applying the Fourier transform to both sides of this relation, we have

Va(A �=(ξ)ũ(ξ)−Qn(ξ)v+(ξ)) =

n∑
k=1

c̃k(ξ
′)ξk−1

m , (8)

where Va = FTaF
−1. The operator Va is invertible, and V −1

a = V−a [6]. Letting the operator V−a

act on both sides of relation (8), we obtain

ũ(ξ) = A−1
�= (ξ)Qn(ξ)GmQ

−1
n (ξ)A−1

= (ξ)�̃v(ξ) +A−1
�= (ξ)V−aF

(
n∑

k=1

ck(x
′)δ(k−1)(xm)

)
.

An a priori estimate can be produced in the same way as in [4, 18] with allowance for the
operator Va being isometric. The proof of the theorem is complete.

2.1. Operator Va. The Case of a Circular Cone
We only consider here the multidimensional cone Ca

+ and describe a boundary value problem
with a unique solution for this cone. Note that the case of m = 2 has been described in [8] and that
of a tetrahedral angle in the space R3, in [7, 9].
Based on the key relation FT−1

a = V−aF , we conclude that it is more convenient to work with the
operator Va in terms of Fourier transforms. Let us start from the left-hand side. Fix a u ∈ S(Rm)
and perform the following computations:

(FT−1
a u)(ξ) =

∫
Rm

eiyξ(T−1
a u)(y) dy =

∫
Rm

eiyξ
′
u(y′, ym + a|y′|) dy

=

∫
Rm

eixξe−iξma|x′|u(x′, xm) dx
′ dxm =

∫
Rm

eix
′ξ′e−iξma|x′|û(x′, ξm) dx

′,

where û(x′, ξm) stands for the Fourier transform of the function u(x′, xm) in the variable xm. Set

Fx′→ξ′

(
e−iξma|x′|

)
≡ Ka(ξ

′, ξm); (9)

after this, considering the properties of Fourier transform, we obtain an integral representation of
the operator V−a, (

FT−1
a u

)
(ξ) =

∫
Rm

Ka(ξ
′ − η′, ξm)ũ(η

′, ξm) dη
′,

where Ka(ξ
′, ξm) is the Fourier transform of the corresponding generalized function.
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Remark 1. In formula (9), the function e−iξma|x′| is nonintegrable and needs to be pre-regular-
ized; in other words, the left-hand side of formula (9) should be understood as the limit

lim
τ→0

Fx′→ξ′

(
e−izma|x′|

)
, zm = ξm − iτ, τ > 0,

and accordingly, (
FT−1

a u
)
(ξ) = lim

τ→0+

∫
Rm

Ka(ξ
′ − η′, zm)ũ(η

′, ξm) dη
′.

2.1.1. Calculating the kernel Ka. By the preceding, we have

Fx′→ξ′

(
e−iξma|x′|

)
=

∫
Rm−1

eix
′ξ′e−iξma|x′| dx′,

and to calculate the last integral, we can use the corresponding formulas in [25, p. 13 of the Russian
translation]; we reproduce these computations here for the presentation to be complete.

Lemma. The kernel Ka has the form

Ka(ξ
′, zm) =

iazm2
m−1π(m−2)/2Γ(m/2)

(ξ21 + ξ22 + . . .+ ξ2m−1 − a2z2m)
m/2

, (10)

where zm = ξm − iτ , τ > 0.
Proof. Let us use some technical tricks in [25, Ch. 1, Sec. 1 of the Russian translation] modified

for our case. The computation of the integral (9) with real indices is based on two formulas for
integrals, which, as can readily be verified, also hold for the corresponding sets of complex numbers.
One of these integrals is the Fourier transform of the function e−α|x′|2 , α > 0,

∫
Rm−1

eix
′ξ′e−α|x′|2 dx′ =

m−1∏
j=1

+∞∫
−∞

eixjξje−αx2
j dxj =

m−1∏
j=1

√
π

α
e−ξ2j/(4α) =

(
π

α

)(m−1)/2

e−|ξ
′|2/(4α),

which can be found in virtually any handbook on Fourier transform. An important role in the above
computation is played by Poisson’s integral

+∞∫
−∞

eixξe−αx2

dx =

√
π

α
e−ξ2/(4α).

The last two formulas remain valid for complex values of α under the condition that Reα > 0.
Further computation is aided by the integral [25, p. 18 of the Russian translation]

e−β =
1√
π

+∞∫
0

e−u

√
u
e−β2/(4u) du, β > 0.

Now, taking into account these formulas, we compute the integral∫
Rm−1

eix
′ξ′e−α|x′| dx′, α > 0.
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The computation is fully similar to [25, p. 17 of the Russian translation]; we provide it here, in
particular, to produce explicit expressions for some constants. We have

∫
Rm−1

eix
′ξ′e−α|x′| dx′ =

1√
π

+∞∫
0

e−u

√
u

⎛
⎝ ∫

Rm−1

e−α2|x′|2/(4u)eix
′tξ′ dx′

⎞
⎠ du

=
1√
π

+∞∫
0

e−u

√
u

(
α2

4u

)−(m−1)/2

π(m−1)/2e−|ξ
′|2u/α2

du

= 2m−1α−m+1π(m−2)/2

+∞∫
0

u(m−2)/2e−u(|ξ′|2+α2)/α2

du.

After the change of variables t = u(|ξ′|2 + α2)/α2, we obtain

∫
Rm−1

eix
′ξ′e−α|x′| dx′ = 2m−1π(m−2)/2 α

(|ξ′|2 + α2)m/2

+∞∫
0

t(m−2)/2e−tdt =
α2m−1π(m−2)/2Γ(m/2)

(|ξ′|2 + α2)m/2
,

where Γ is the Euler gamma function. Denoting cm = 2m−1π(m−2)/2Γ(m/2), we ultimately write∫
Rm−1

eix
′ξ′e−α|x′| dx′ = cm

α

(|ξ′|2 + α2)m/2
.

Now, using the fact that the integral on the left-hand side in this relation exists for complex values
of α such that Reα > 0, we write down the relation for the complex values of γ + iβ (γ, β ∈ R),∫

Rm−1

eix
′ξ′e−(γ+iβ)|x′| dx′ = cm

γ + iβ

(|ξ′|2 + (γ + iβ)2)m/2
,

and for γ and β we choose the numbers γ = aτ , a > 0, and τ > 0, β = aξm. Then

−(γ + iβ) = −aτ − iaξm = −ia(ξm − iτ),

and we can write ∫
Rm−1

eix
′ξ′e−i(ξm−iτ)a|x′| dx′ = cm

ia(ξm − iτ)

(|ξ′|2 − a2(ξm − iτ)2)m/2
.

Thus, setting zm = ξm − iτ , we obtain formula (10). The proof of the lemma is complete.
Consequently, in the case of a straight circular cone, the action of the operator V−a can be

represented as

(V−aũ)(ξ) = lim
τ→0+

1

(2π)m−1

∫
Rm−1

iazm2
m−1π(m−2)/2Γ(m/2)ũ(η′, ξm) dη′

((ξ1 − η1)2 + (ξ2 − η2)2 + . . .+ (ξm−1 − ηm−1)2 − a2z2m)
m/2

. (11)

In formula (11), we have made use of one of the key properties of the Fourier transform (the
factor multiplying the integral).
Apparently, it is natural to call formula (10) a complex analog of Poisson’s kernel [25].

Remark 2. In the paper [26], the present author described the transformation operator for
a broad class of cones from the standpoint of the theory of generalized functions [24] and provided
formulas similar to (10) and (11) in which the numerators are written incorrectly, a fact that is easy
to check by means of passage to the limit as a→ 0 in them (see below).
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2.1.2. Two passages to the limit. First, we assume that u ∈ S(Rm) in formula (11). Since
T0 ≡ I, we have

(V0ũ)(ξ) = lim
a→0

lim
τ→0+

1

(2π)m−1

∫
Rm−1

iazm2
m−1π(m−2)/2Γ(m/2)ũ(η′, ξm) dη′

(|ξ′ − η′|2 − a2z2m)
m/2

= ũ(ξ′, ξm).

Further, it can readily be seen that the parameters a and ξm can be swapped in the kernel (10),
so that

lim
ξm→0

(Vaũ)(ξ) = lim
ξm→0

lim
τ→0+

1

(2π)m−1

∫
Rm−1

iazm2
m−1π(m−2)/2Γ(m/2)ũ(η′, ξm) dη′

(|ξ′ − η′|2 − a2z2m)
m/2

= ũ(ξ′, 0).

The first limit transition demonstrates the naturality of the term “Poisson’s kernel,” while the
second will be needed in what follows when studying a specific boundary value problem.

2.2. General Solution and Boundary Conditions
Let v ≡ 0. Then the assertion in Theorem 1 becomes considerably simpler and the general

solution of the equation looks as follows:

ũ(ξ) = A−1
�= (ξ)V−a

(
n∑

k=1

c̃k(ξ
′)ξk−1

m

)
,

or, after transformation, as

ũ(ξ) = A−1
�= (ξ)

(
n∑

k=1

C̃k(ξ, ξm)ξ
k−1
m

)
, (12)

where C̃k(ξ, ξm) = (V−ac̃k)(ξ
′, ξm).

Thus, we need additional conditions to unambiguously determine the functions C̃k(ξ
′, ξm). If we

determine the functions C̃k(ξ
′, ξm), then the functions c̃k(ξ′) will be uniquely determined by virtue

of the operator V−a being invertible.

2.3. Integral Boundary Condition
Formula (12) contains n arbitrary functions, and if we fix them, then the solution becomes unique.

To unambiguously determine these functions, we should equip the equation with an additional
(boundary) condition to arrive, as a result, at some boundary value problem.

2.3.1. The case of n = 1. In this case, formula (12) acquires the form

ũ(ξ) = A−1
�= (ξ)C̃1(ξ, ξm) = A−1

�= (ξ)(V−ac̃1)(ξ
′, ξm) (13)

and contains only one arbitrary function.
This problem looks the easiest with the integral boundary condition

+∞∫
0

u(x′, xm) dxm = g(x′), (14)

which, in terms of Fourier transforms, acquires the form

ũ(ξ′, 0) = g̃(ξ′). (15)

If we take into account condition (15) in formula (13), then we obtain

ũ(ξ′, 0) = A−1
�= (ξ′, 0)C̃1(ξ

′, 0) = A−1
�= (ξ′, 0)(V−ac̃1)(ξ

′, 0),

based on which one can readily determine the function c̃1(ξ
′), because (Vac̃1)(ξ

′, 0) = c̃1(ξ
′).
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Thus, when written in terms of Fourier transforms, the solution of the boundary value prob-
lem (14) for the homogeneous equation

(Au)(x) = 0, x ∈ Ca
+, (16)

looks as follows:

ũ(ξ) = A−1
�= (ξ) lim

τ→0+

1

(2π)m−1

∫
Rm−1

cmiazmA �=(η′, 0)g̃(η′)) dη′

(|ξ′ − η′|2 − a2z2m)
m/2

. (17)

Let us state the last result as a theorem.

Theorem 2. Let κ − s = 1 + δ , |δ| < 1/2. Then the boundary value problem (14) with any
right-hand side g ∈ Hs+1/2(Rm−1) for the homogeneous equation (16) has a unique solution in the
space Hs(Ca

+), which is given by formula (17).

Remark 3.We can consider a more general version of the cone Rk×Ca
+ in a (k+m)-dimensional

space and obtain an analog of the above-proved lemma, while the k-wave factorization will allow us
to derive an analog of Theorem 2.

2.3.2. The case of m = 2. In the two-dimensional case, formula (17) can be simplified
considerably with the help of the theory of boundary value problems for analytic functions and the
theory of one-dimensional singular integral equations [20, 21].
Consider the integral in (17) (we have taken into account that c2 = 2, z2 = ξ2 − iτ , τ > 0),

F (ξ1, z2) =
1

π

+∞∫
−∞

iaz2f(η1) dη1
(ξ1 − η1)2 − a2z22

,

which can be represented as a sum of two integrals with the help of the decomposition

1

π

iaz2
(ξ1 − η1)2 − a2z22

= − 1

2πi

[
1

ξ1 − aξ2 − (η1 − iaτ)
− 1

ξ1 + aξ2 − (η1 + iaτ)

]

=
1

2πi

[
1

η1 − ((ξ1 − aξ2) + iaτ)
− 1

η1 − ((ξ1 + aξ2)− iaτ)

]
.

Consider a Cauchy type integral on the real line (z2 = ξ2 + iτ)

Φ(ξ1, z2) =
1

2πi

+∞∫
−∞

u(ξ1, η) dη

η − z2

and denote its limit values from the upper and lower half-planes by Φ+(ξ1, ξ2) and Φ−(ξ1, ξ2),
respectively. The formulas for the limit values of a Cauchy type integral are well known [20, p. 47],

Φ±(ξ1, z2) = ±1
2
u(ξ1, ξ2) +

1

2πi
v.p.

+∞∫
−∞

u(ξ1, η) dη

η − z2
.

Taking into account these formulas for the function F (ξ1, z2), we find its limit value

lim
τ→0+

F (ξ1, z2) = F+(ξ1, ξ1 − aξ2)− F−(ξ1, ξ1 + aξ2).
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Thus, in the two-dimensional case, formula (17) acquires the form

ũ(ξ1, ξ2) =
A�=(ξ1 − aξ2, 0)g̃(ξ1 − aξ2) +A �=(ξ1 + aξ2, 0)g̃(ξ1 + aξ2)

2A �=(ξ1, ξ2)

+
1

A �=(ξ1, ξ2)
v.p.

1

2πi

+∞∫
−∞

A �=(η, 0)g̃(η) dη
η − (ξ1 − aξ2)

− 1

A �=(ξ1, ξ2)
v.p.

1

2πi

+∞∫
−∞

A �=(η, 0)g̃(η) dη
η − (ξ1 + aξ2)

.

(18)

Corollary. Under the assumptions of Theorem 2, for m = 2 formula (17) acquires the form (18).

Note that formula (18) was produced using a different method in the paper [8].

CONCLUSIONS

In the present paper, we have considered one of the simplest multidimensional versions of the
boundary value problem in a cone; however, the general approach used can be applied to other
“conic” situations [8, 9]. We envisage further research of multidimensional conic situations, because
the great variety of those necessitates detailed investigation in each particular case.
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