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PARAMETRIC X-RAY RADIATION ALONG TUI VELOCITY OF 
A RELATIVISTIC ELECTRON IN A BRAGG SCATTERING 
GEOMETRY

S. V. Blazhevich1 and A. V. Noskov2 UDC 537.8

Based on the dynamic scattering theory, forward parametric x-ray radiation (FPXR) o f  a relativistic electron is 
investigated in a single crystal plate in a Bragg scattering geometry. Analytical expressions for the spectral- 
angular distribution o f FPXR and transition radiation (TR) including the crystal surface orientation with respect to 
a system o f  diffracting atomic planes are derived, which allow one to identify the conditions under which 
a contribution from FPXR is considerable even in the case o f a thick absorbing crystal.

INTRODUCTION

The theory of parametric X-ray radiation (PXR) of a relativistic particle in a crystal predicts radiation not only in 
the Bragg scattering direction but also along the velocity of a radiating particle (FPXR) [1-3]. Due to extensive 
experimental attempts made to study FPXR [4-6], a theoretical description of its mechanism appears to be urgent.

For the case of Laue scattering geometry, FPXR was addressed in [7, 8], and for the Bragg geometry -  in [9]. The 
result obtained in [9] is the absence of any FPXR yield in the case of a thick absorbing target. In [9], the effect of 
suppression of FPXR is accounted for by the fact that only one branch of the solution to the dispersion equation makes 
a considerable contribution into this effect, which corresponds to the waves with a negative group velocity, i.e., the waves 
transferring energy in the direction from the output to the input surface of the plate and attenuating forward radiation in the 
case of a sufficiently thick target. Note that the cited work considered a special case where the system of diffracting atomic 
planes was parallel to the input surface of the crystal plate.

In the present work, we address a more general case where diffracting atomic planes could be located at an arbitrary 
angle with respect to the target surface. It was shown earlier [10, 11] that transition and diffraction transition radiation 
depend heavily on this angle. In the present work, based on the dynamic scattering theory [12] we obtain analytical 
expressions for the spectral-angular density of FPXR and TR containing a parameter that includes the angle between the 
atomic planes and the target surface. We demonstrate that for certain values of this angle the FPXR branch describing the 
waves with a positive group velocity becomes appreciably significant, due to which there is no suppression of FPXR even 
in the case of a quite thick crystal target.

SPECTRAL-ANGULAR DISTIRBUTION OF RADIATION

Let us consider radiation of a fast charged particle crossing a single crystal plate at a constant velocity V (Fig. 1). 
When solving the problem, let us take an equation for a Fourier image of an electromagnetic field
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Fig. 1. Geometry of the radiation process.

E(k,(ri) = j d 3rE (r ,t)G x p (m t- ik r )d t . (1)

Since the field of a relativistic particle could, to a good accuracy, be taken as being transverse, the incident 
E 0(k,(o) and diffracted E g(k,oS) electromagnetic waves are determined by two amplitudes with different values of

transverse polarization

E 0(k,w) = + 4 2)(* ,w )4 2).
(2)

E x(k,ai) = E ^ i k M ^ P  + 4 2)(*>®M(2)-

The unit vectors of polarization e\]*, , e\^] and e\2) are selected as follows: the vectors and e\2) are

perpendicular to the vector k, and the vectors and e\2) are perpendicular to the vector kg = k + g . It should be noted 

that the vectors e\2* and e\2) lie in the plane of the vectors k  and kg (K-polarization), and the vectors and e\11 are

perpendicular to this plane (o-polarization); g  is the reciprocal lattice vector controlling the system of reflecting planes of 
a crystal. The system of equations for a Fourier-image of an electromagnetic field in a two-wave approximation of the 
dynamic diffraction theory has the following form [13]:

(co2(l + X o ) -^ 2) 4 5) + u>2X -gC is’z)E {gs> = 87t2/eo)0 (7^s,8 (o )-  A V),
(3)

(0% C (s’T)E ^  +((o2(l + x 0) - ^ ) E (gs) = 0,

where %g , %_g are the coefficients of the Fourier expansion of the dielectric susceptibility of a crystal over the reciprocal 

lattice vectors g ,

X(co,r) = )e,gr =Z (X y(® ) + itfg(to))el8r ■ (4)
g g

Let us consider a crystal with the symmetry (%g = %-g) , with %g determined by the following expression:



Xg = l Q { F { g ) I Z ) { S { g ) I N Q) Q ^ [ - ^ g 2u^]) , (5)

where %0 = %'0 + iy"{) is the average dielectric susceptibility, F(g) is the atom form factor containing Z  electrons, S(g) is the 
structural factor of a unit cell containing ,\0 atoms, ux is the r.m.s. amplitude of thermal vibrations of crystal atoms. The 
work addresses the X-ray frequency range (%'„ < 0, %'0 < 0) •

Quantities C(s,T) and I>is ) are determined in the system of equations (3) as follows:

C(S’T) = e(0s)e[s) = (-1 )TC W , C (1) = 1, C (2) = |cos29B| ,

P ^  = e ^ )(p /p ), ,P(1)=sin(p, P {2) = coscp, (6)

where p = k - c o V /V 2 is the component of a virtual photon momentum perpendicular to the particle velocity V .
p = 0)0/1'. 8 « 1  is the angle between k  and V. 0B is the angle between the electron velocity and the system of
crystallographic planes (Bragg angle), (p is the azimuthal radiation angle measured from the plane formed by the vectors V 
and g, the value of the reciprocal lattice vector is determined by the g  = 2o)B sin0B I V , where coB is the Bragg frequency. 
The system of equations (3) for 5 = 1 and x = 2 describes the o-polarized fields. For 5 = 2 , the system of equations (3)

7T
describes 7i-polarizcd fields; note that if  20B < —, then x = 2 , otherwise x = 1.

Let us solve the dispersion equation following from the system (3) for X-ray waves in a crystal

(® 2 (1 + Xo) -  k 2 X ® 2 (1 + Xo) -  kl ) -  tt>AX-gXgCis)2 = 0 (7)

using conventional methods of the dynamic theory [12].
Let us find projections of the wave vectors k  and k  in the form

COYn , COYn ^
kx = m c o s \ | / 0 + A0 + — 2 — , k = racos\|/ + A0 + — .

2cos\|/0 cos\|/0 2cos\|rg cos\|rg

In so doing we will make use of a well-known expression relating the dynamic addends X0 and [12]

(8)

^ = t +x« ^  (9)

where P = a -% 0 1 - —  , a  = —jik g  - k 2) , y0 = cos\|i0 , yg = cos\|/g , \|/0 is the angle between the wave vectors of the
V To J  CO

incident wave k  and the vectors of a normal to the surface of the plane n, \|/„ is the angle between the wave vector kg and

the vector of the normal. The absolute values of the vectors k  and A„ have the form

k  = ©i/l + Xo +^“0 > kg = (&\]l+Xo +Xg . (10)

Considering that h  ~ cosin\|/0 , L  == cosin\|/ , we obtain



The solution to the system of equations (3) for an incident field in a crystal has the form

2 , , -co2p -  2(Ü— X0
^  = Z j U e V ^ ------------------------------ ^

4 ^ . ( ^ 0 - ^ ) ) ^ 0 - ^ 2)) (12)co

where X0 = coV 2+e2- x 0A
2

V y

+E(s)m8(X0 -  À®) + E (s)(2)8(k0 -  4 2))

and and l(is)i2) are free fields corresponding to two solutions, Eq. (11), of the

dispersion equation (7).
For a field in vacuum in front of the crystal, the solution to Eqs. (3) has the form

^Mvaci 7̂1 ieVQP^  ̂ 1 s yEq = ------------------------- T7— 6(A0 -A 0) ,  (13)
co 2k0

Xo
CO

and for the field behind the crystal the following form:

“Xo

ffMvacn = Zk2ieVQP(s)-----L ^ § (^ 0 - 4 )  + £ M rad§ f + ̂ ï , ( i 4)
co v 2 J

CO

--(s)radE ; is the sought-for field of radiation.
From the second equation of the system (3) follows an expression relating the diffracted and incident fields in

a crystal

ft\2y
g ( s )cr _   g ( s ) c r

,  y  ^  • (15)
-co p-2co— À0 

To

Using ordinary boundary conditions

JE ^ vacId l 0 = JE^s>CId l o , (16a)

i— L  M l

jE {0s)CIe 7° d l 0 = j 4 " )vacIIe y° d)i0 , (16b)

M l

j £ ^ )cre y° d k 0 = 0 ,  (16c)

we obtain an expression for the radiation field



E Mrad toi2ieVQP<s)

i 0+̂i------—L
YO

CO X« -Xg x(02) -X*0

-co2p- 2co— Yo - f - c o2p- 2co— Yo 
To J I  To J

—(fl2p -  2co— à !2) 
To

- I  -co2p -  2co— A P 
To

CO CO- + -
-(flX o-2^o 2(k*o-X(2)) j

iW z b _ L
e 70 -1

iK ^ L
,  Yo

f  \CO CO+
-cûx0 -2l*0 2(X*0 - l o  >)y

:K J- K L
e Yo -1

3i ̂  1 3i . A0 ~A0 L
,  Yo

(17)

The radiation field /•.'( v,rad contains contributions from FPXR and TR. Since the presence of the background TR is 
a major obstacle for an experimental validation of FPXR, it is critical to express the /•.'( v,rad as a sum of the amplitudes of 
FPXR and TR

p (s ) ra d  _  F (s) F (s)
^  _  F P X R  +  T R  ; (18a)

(S) 87 i 2 i e V Q P M  ‘ Yov '  ---------------- e
CO ®Xo + 2K  2^0

1- -

2 < o i (x<“ -x < 2' ) /
To

V„

To

(1) ), * ,A0 -A0
-co2p-2co— \e Yo -  -co2p-2co— \e Yo

To

), (2) i* . A0 -A0

(18b)

;___ I_T

TV'■(*) _
Hn2ieVeP(s) co

F P X R œ 2X W  -X*o ,^2) -X*o

-co2p-2co— à !2) le Yo - f -c o 2p-2cû—  A P le  Yo
To To
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>
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representing the dynamic addend for two waves of X-ray waves (11) in the form

X<1,2) _ o _
œ|X' C<s)|/ 1

2e
^<s) - <̂s)2 -  e -  ip<s) <<1 + e)^<s) -  2k<s)e) -  p',< s) < s ). K s)c p< s )2 <1+ e ) 2 -  k< s )2e <19)

where

{s) _ a  xK 1+ e) _ n <s)<œ) + 0 +e) v<s) _ \XgC<s ) l p<s) _ xO 
Ç _ 2 |xgC <s) | 2 1xgC<s) | _ ^  < ) 2v<s) ’ _ IxOl ’ P _ lXgC<s)

_(*)(m) a  2sin2eB f®B(1+ 0 cos9 cot0b) ^  e IYg 1 K(s) _ xgC(s) (20)
n (ra)_ 2 ^ _ ra 1J , V ’ K _ ^ X T • (20)

Since in the region of X-ray frequencies the inequality 2sin2 0b / v 2 |x g c(s )| >> 1 is satisfied, then n (s) (ra) is a fast 

function of the frequency ra, so for further analysis of the properties of the FPXR and TR spectra it is convenient to treat 

n ( s) (ra) as a spectral variable characterizing the frequency ra.
When deriving the formula in Eq. (19) we took into account that in the radiation geometry under consideration the 

angle between the diffracted photon pulse and the normal vector to the crystal surface is obtuse, that is j g _ cosyg < 0 .

From Eq. (19) follows that there is a frequency region where the radiation waves emitted near the input surface are 
entirely reflected in the crystal by the atomic planes and are not propagated forward. The wave vector 

k (1,2) _ ra / 1+ X0 + x 01,2) in this region acquires complex values even in the absence of absorption ( (s) _ o ) , that is, the

radicand in the formula <19) is negative. This region of frequencies is termed a region of total reflection and is derived as 
follows:

;<s) < e or

- > / e - < n (s) < > / e - . (21)
2v(s) 2v(s)

it is evident that the width of the region is controlled by the value 2>/e .
Parameter e from Eq. (20) could be presented in the form e_sin (0B -5 )/s in (0 B + 5), where 5 is the angle

between the input surface of the target and the crystallographic plane. The value of e prescribes orientation of the input 
surface of a crystal plate with respect to the system of diffracting atomic planes. For a fixed value of 0b , with a decrease in 
the angle of incidence (0b + 5) of an electron onto the target, parameter 5 becomes negative and further increases in its 
absolute value (limiting case 5 ^  - 0 b ), which gives rise to an increase in e . On the contrary, with an increase in the angle 
of incidence e decreases (limiting case 5 ^ 0 b ). It is noteworthy that the region of total reflection depends on crystal 
orientation.

Using Eq. (19), let us present Eqs. (18b) and (18c) in the form

m(y-2 +e2)
(s) _ 8%2ieV0P (s) 2Y0 L f

£TR _ ^ ------  e
TR œ 02 + Y-2 02 + Y-2 -Xo J
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1 + -
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< s) I 2e e

£<s) -  i p<s)<1 + e) -  K <s) 
2

<̂s) - . p< s)<1 + e) K  <s )
I  b  s) Ï—

<22a)

E<s) _ 8n2 ieV0P<s)_____ 1_
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i ------------------L
2Y0
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œ  ' + i J

2e
o < s ) + i p<s )<1 - e )  ^ ) + K<s ) 

2e e

<22b)

e
X

where b<s) _
œ ç C )

2Yo
is the parameter depending on the electron path in the crystal L / y0 ,

K <s) _ fc<s)2 - e - ip<s)<<1+ e)^<s) -  2k<s)e) -  p<s)2 f M 2 -  k<s)2e1 , o<s) _ - r^ ( 02 + y-2 -%'o
V V 4 J 1 x gC 1

According to expression <22b), two X-ray wave branches are possible in the crystal, which contribute to the FPXR 
yield. The contributions from the first and second branches are considerable when the respective equations have solutions

Re ,s) , ; p<s)<1 - e )  <̂s) - K <s) 1
o v ' + i -

2e
>o<s) -

<̂s ) - ^ < s )2 - 1
_ 0 . <2 3 a)

Re o < s ) + i p<s )<1 - e )  <̂s ) + K  <s ) I 
2e e

>o<s) - _ 0 . <23b)

Since o<s) > 1, it could be shown that Eq. <23b) always has a solution, while Eq. <23a) can be solved only under the 

condition where e < ^  . In [9], only the case for e _  1 was considered, where the contribution from the first branch is
o

negligibly small.
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FPXR SPECTRUM

Substituting Eq. (22b) into a well-known [13] expression for spectral-angular density of X-ray radiation in the 
vicinity of velocity V

(24)

we will obtain an expression for the spectral-angular density of FPXR

d 2N(1’2)(S) e2u 1 v TJPYl? eœ- FPXR
d œd Q

= _  02 p(s)2 .

02 + Y 2 - Xo )

-F  (1’2)' (24a)

F  (U)W = .

^(s) -  j p(s)(1 + e) -  K (s) ̂  e lb(S} E -  ( £(s) -  , p(s)(1 + e) + K (s) 1 S> e^( s) -  i'-

(  ib( s ) ( CT(s) P( s)(1-j) + K ( V ±ib( s) 
e e1 -  e I 2E E 1 

V J
j s s) , , P(s)(1 - e )  ^(s) + K (s)

2e e

(24b)

Expressions (24) for the spectral-angular density of two branches of FPXR are the major result of this work. It 
should be noted that they were derived relying on the dynamic diffraction theory for any orientation of diffracting atomic 
planes of a crystal with respect to the crystal plate surface, with absorption taken into account. In a special case, where the 
atomic planes of the crystal are parallel to the input surface (e = 1), expressions (24) are transformed to the expressions

(1)(J) (2)(J)obtained in [9]. The curves describing the spectra of the first and second FPXR branches constructed using
the formulas of Eq. (24b), are given in Figs. 2 and 3, respectively. The curves in Fig 2 demonstrate an increase in the 
amplitude of the peak in the first branch of FPXR and a decrease in its spectral width with increasing thickness of the 
crystal, which are limited by absorption of radiation. It should be noted that the contribution from this branch increases with 
decreasing parameter e , that is with a decrease in the angle between the wave vector kg = k  + g  and the crystal surface

(Fig. 4). The values of the parameters corresponding to the curves are given in the figures.
It is evident in Fig. 3 that with an increase in the crystal thickness the amplitude of the peak of the second FPXR 

branch is initially increasing but for a considerably large thickness it begins to decrease, i.e., there is a suppression of of this 
branch of radiation. In order to explain this fact let us calculate the group velocity along the OX-axis of the radiation waves, 
neglecting absorption

dœ

- 1 f
cos y  0 -

sin2 0B ( £(*) 11 - 1
1 + - ^

lcosy g 11 V^(s)2 - j
(25)

1

x

581



Fig. 2 Fig. 3

Fig. 2. Increasing amplitude of the spectrum of the first branch of FPXR with increasing target density. 

Fig. 3. Suppression of the spectrum of the second branch of FPXR with increasing target density.

Fig. 4. Radiation geometry for which the spectral-angular 
density of FPXR is considerable for a thick crystal.

It could be shown that the group wave velocity corresponding to the first branch of the solution to the dispersion 

relation is positive /3co) > 0 at any \|/0 and 0B, and the energy of this wave is transferred from the input to the

output surface of the target. The group velocity of the second wave is always negative ( d k ^  Id coj < 0 , hence, the energy

of this wave is transferred from the output to the input surface of the target. This circumstance gives rise to a suppression of 
the second wave of FPXR in the case of a thick crystal, where the transferred energy is entirely absorbed.

Thus at a sufficiently large crystal thickness, FPXR corresponding to the second branch is suppressed; nevertheless,

in this case under the condition £ < —̂  FPXR corresponding to the first branch of the solution to the dispersion equation
a 2

will be considerable.
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Fig. 5. Spectra of the first and second branches of FPXR versus 
different values of parameter £.

Figure 5 shows the effect of orientation of atomic planes of the crystal with respect to the crystal surface (parameter 
s) on the contributions from the first and second branches of FPXR.

In a real experiment, the contribution from FPXR could be observed only against the background TR, it is, 
therefore, necessary to analyze a contribution from TR separately. Substituting Eq. (22a) into Eq. (24), we will obtain 
a relation for the spectral-angular density of transition radiation

coa  /VTR _  g Q2p(s)2 

doddQ 7t2 0 + Y 0 +Y -Xo R(s)

R{s) = 1 +  -
2K K }e

(s)

(5) I 28 8

.(,) ,.p(5)(l + e) 
2

K

(26)

In order to observe relative contributions from PXR and TR, it is useful to represent Eqs. (24) and (26) in the 
following form:

co-
dzN ,(*) 2 „0)2

F P X R  =  g  P  '  W ( 1 2 )   ̂ W ( l , 2)

02 
|Xo|

dcodQ n2 |x'o e2 l
+  ^ + 1

is)

Jxol |Xo|y2

(27a)

2AKU)'
C0-

Xs)
T R  _

d(ûd£l

2 p(s )2

n2 Ixo
-W T R wTR=- Xo

/ e2 l 
+-

-R.

IXol |Xo I "Y2 J lIXol IXoIr - + 1

(27b)
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Fig. 6. Increase in the amplitude of FPXR spectrum with decreasing 
parameter £ against the background transition radiation.

a (5)- As)
(  e2

Jxol IXolY2
+1

The spectral curves of PXR and TR presented in Fig. 6, which were constructed using Eq. (27) for a thick crystal 
and a fixed observation angle Q/yj|xo I ? demonstrate a considerable increase in FPXR with decreasing parameter £. It is 

evident that for sufficiently small £ the transition radiation background would not be a large obstacle for an experimental 
observation of FPXR in the Bragg geometry.

SUMMARY

Based on the dynamic diffraction theory, we have obtained analytical expressions of the spectral-angular 
distribution of FPXR and TR of a relativistic electron crossing a crystal plate of arbitrary thickness in the Bragg scattering 
geometry. The expressions obtained include the angle between the crystal plate surface and the system of diffracting atomic 
planes of the crystal and in the limiting case £ = 1 they move to the expressions obtained earlier [9]. In contrast to [9], where 
a conclusion is made that in the Bragg geometry for a thick crystal there is no FPXR, which relies only the case where the 
diffracting planes were parallel to the crystal surface, in this work we have established that the spectral-angular density of 
FPXR depends heavily on the angle between the crystal plate surface and the diffracting atomic planes. Then, in the case 
where the angle between the wave vectors of PXR and the surface of the crystal plate decreases (Fig. 4), the spectral-angular 
of FPXR considerably increases. We have shown that under these conditions the transition radiation background would not 
be an obstacle for an experimental pbservation of FPXR in the Bragg geometry.

This work has been supported by the RBRF, grant No. 05-02-16512 and a grant of the Belgorod State University in
2006.
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