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Abstract. The structural transformation and mechanical properties of a low-carbon 0.2% C 

steel and a 0.09% C–Mn–V steel in coarse- and ultrafine-grained (UFG) states were studied. 

The UFG structure with structural elements about 210-375 nm in size was obtained by rotary 

swaging (RS) and equal-channel angular pressing (ECAP). ECAP was used to compare the 

influence of the industrial deformation and SPD methods on the microstructure and properties 

of low-carbon steels. It was shown that an increase in true strain ratio and a decrease in final 

temperature of RS improve strength properties and reduce plasticity of these steels. In both 

steels after RS, UTS within the range from 800 up to 920 MPa with elongation in the range of 

15-17% at the final deformation temperature of 400 °C was obtained. It was found that the 

strength of 0.2% C steel after ECAP was on the same level with that steel after RS. The 

strength properties of low- carbon 0.09% C–Mn–V steel after ECAP were significantly higher 

than those after RS. 

1. Introduction 

Severe plastic deformation (SPD) methods lead to significant refinement of the microstructure and 

improve the strength and service properties of low-carbon steels [1,2]. The ultrafine-grained low-

carbon steels were already obtained by such methods as equal-channel angular pressing (ECAP) [2-6] 

and high pressure torsion (HPT) [7-9]. However, these methods are hard to implement in industry. 

One of the industrial deformation schemes used, for example, in the automotive industry, is rotary 

swaging (RS) [10]. This method allows the molding of pipes, rods and wires to give the final shape to 

the deformed parts with minimal subsequent processing or without it. This technique was already 

approved for refinement of the microstructure of many alloys [11, 12]. 

Usually the unalloyed or low-alloyed low-carbon steels are subjected to severe plastic deformation 

in the initial ferritic-pearlitic state. The initial ferritic-pearlitic structure is convenient for SPD process 

since it does not need high deforming force. However, the obtained microstructure after deformation is 
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inhomogeneous and unstable during heating. On the other hand, the initial martensitic state provides a 

more dispersed microstructure and better strengthening than initially ferritic–pearlitic state [9,13]. 

Additionally, the formation of a fine carbide phase after quenching leads to increased thermal stability 

of such a microstructure. However, the deformation process of the initial martensitic structure requires 

increased deforming force. In our study we use high-temperature tempering of the steels after 

quenching. Such thermal treatment will secure uniform distribution of carbides after quenching and 

reduce the deforming force owing to high-temperature tempering.  

The aim of present study is to evaluate the UFG microstructure that obtained by the RS method in 

the low-carbon steels and to clarify the difference between the microstructures processed by RS and 

SPD methods. The microstructure and thermal stability of strengthening of low-carbon 0.2% C steel 

and 0.09% C–Mn–V steels is studied and the effect of UFG structure of these steels on its mechanical 

behaviour is determined. 

2. Experimental 

The chemical compositions of the low-carbon 0.2% C and 0.09% C–Mn–V steels are shown in Table 

1. The high-temperature treatment was performed by 2 regimes: (1) quenching at a temperature of 

880°C (holding time of 1 h followed by water cooling) and tempering at a temperature of 600°C 

(holding time of 1 h) for the 0.2% C steel; (2) quenching at a temperature of 920°С (holding time of 1 

h followed by water cooling) and tempering at 680°C (holding time of 1 h) for the 0.09% C–Mn–V 

steel. The microstructures of these steels in the initial state after quenching and high-temperature 

tempering are shown in figure 1. 

Table 1. Chemical composition of steels. 

Steels 
Amount (wt.%) 

C Mn Si Ni Mo V Cu Cr P S As Fe 

0.09% C–

Mn–V  
0.096 1.56 0.19 0.1 0.0027 0.05 0.13 0.12 0.02 0.014  balance 

0.2% C 0.19 0.21 0.49 0.03   0.19 0.25   0.05 balance 

 

RS was realized by a rotary swaging (RS) machine RKM 2129.02 (figure 2 a). Billets of 19.6 mm 

in diameter and 100 mm in length were deformed by RS machine with the frequency and magnitude of 

the impacts of the dies of 1920 min-1 and 3 mm, respectively. Eight impacts of dies per one revolution 

about the axis were applied to the billet [11, 12]. RS was carried out via two RS regimes with a 

stepwise decrease in the temperature of deformation within the range from 650 °C to 500 °C, or from 

600 °C to 400 °C. The true stain increased from 0.6 to 2.3 during RS. The true stain (ε) was estimated 

by the formula: 

ε = ln (µ), 

where μ – is the total extrusion ratio equal to A0 /Af, where A0 and Af are the initial and the final cross-

sectional area of the billets, respectively [11, 12]. 
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Figure 1. Light micrographs of the microstructure of 0.09% C – Mn – 

V (a) and 0.2% C (b) steels after quenching and high-temperature 

tempering. 

 

ECAP (figure 2 b) of the specimens of 20 mm in diameter and 80 mm in length was carried out at a 

temperature of 400°C by route Bc (successive axial rotation of the billet by 90° after each pass). The 

intersection angle between the channels was 120°, and the numbers of passes N = 4 resulted in true 

strain of 3.6. The true strain applied to the billet per pass for the defined die geometry equals 0.9 

(shear strain γ = 1.5) [14 ,15]. 

 

  
a b 

Figure 2 Schemes of RS (a) and ECAP (b). 

 

RS of the 0.09% C–Mn–V steel was performed in two regimes with a stepwise decrease in the 

deformation temperature of each stage: regime1: 1 stage at 650°С (ε = 0.6) → 2 stage at 575°С (ε = 

1.2) → 3 stage at 500°С (ε = 2.3); and regime 2: 1 stage at 600°С (ε = 0.6) → 2 stage at 500°С (ε = 

1.2) → 3 stage at 400°С (ε = 2.3). RS of the 0.2% C steel was performed by the regime 2.  

The microstructure was analysed in optical Olympus PME 3 microscope and in JEM- 1400 

transmission electron microscope. The samples for the metallographic analysis were chemically etched 

with a solution of 3% nitric acid in С2H5OH. Thin foils for transmission electron microscopy (TEM) 

were mechanically ground to 90 μm and thinned to perforation electrolytically with a supersaturated 

solution of chromic anhydride in orthophosphoric acid, at a voltage of ~23 V. 

The mechanical properties were determined using a tensile testing INSTRON 3380 machine with a 

load capacity of 100 kN. Microhardness was measured on a 402 MVD Wolpert Wilson instrument at a 

load of 100g. 
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3. Results and Discussion 

The light micrographs of microstructure of the 0.09% C–Mn–V steel after RS are shown in two 

regimes with a decrease in the deformation temperature in figure 3. The microstructure of the 0.09% 

C–Mn–V steel after 1 stage of 1 RS regime with a true strain of 0.6 doesn’t differ from the initial 

microstructure of this steel (figure 1, figure 3a). The 2nd stage of 1 RS regime led to the oriented 

initial grain microstructure (figure 3b). As we can see from the light micrograph of samples, 

microstructure after the final 3 stage of the RS is significantly oriented (figure 3c).  

The TEM analysis revealed the formation of a submicrocrystalline grain-subgrain microstructure 

with an average grain/subgrain size of 325±30 nm (figure 4). The average size of the microstructural 

elements was determined from dark-field TEM images (figure 4b). During RS the refinement of 

microstructure occurred due to formation of the shear bands with a thickness of about 300 nm and the 

formation of subgrains inside of them. Point reflections on an annular electron diffraction patterns in 

the corresponding TEM micrographs (the inset of figure 4a), as well as a fringe contrast at the grain 

boundaries (figure 4a) proved the presence of high-angle boundaries, i.e. the grain microstructure. 

 

 

Figure 3. Light micrographs of the microstructure of 0.09% C–Mn–V 

steel after RS by 1 regime: stage 1 (а), stage 2 (b), stage 3 (c); 2 regime 

stage 3 (d)/ 

 

The metallographic analysis of the 0.09% C– Mn –V steel after the last stage of the second regime 

with a true strain of 2.3 revealed even more oriented microstructure comparing to that after 1 regime 

as a result of a lower final temperature (figure 3d). 
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Figure 4. TEM micrographs and SAD pattern for a sample of 0.09% C–

Mn–V steel after RS by 1 regime. 

 

During RS by the second regime the refinement of 0.09% C–Mn–V steel microstructure also 

occurred due to the formation of the shear bands. The thickness of these shear bands is about 215±30 

nm (figure 5). The TEM analysis revealed a small grain with an average size of 130 nm with a fringe 

contrast at the boundaries. 

 

 

Figure 5. TEM micrographs and SAD patterns for a sample of 0.09% C–

Mn–V steel after RS by 2 regime. 

 

The TEM analysis of the 0.2% C steel after RS by the 2 regime also revealed a highly oriented 

structure (figure 6). Submicrocrystalline structure with an average grain size of 285 nm is seen in the 

TEM image. 

Accordingly, the selected regimes of RS of the 0.2% C steel and the 0.09% C–Mn–V steel let to 

produce a predominantly UFG microstructure with grain sizes within the range of 285 - 375 nm. It 

should be noted that the subgrain structure of these steels was stabilized by the carbide phase 

precipitates.  
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Figure 6. TEM micrographs and SAD pattern for a sample of 0.2% C steel 

after RS by 2 regime. 

The TEM analysis of samples after ECAP doesn’t reveal the formation of shear bands. The 

deformation subrgrains/grains have a quasi-equiaxial shape. The TEM micrographs of the samples 

after deformation by ECAP for a number of passes N = 4 showed a partially submicrocrystalline and, 

mostly, subgrain structure (figure 7). The high-angle misorientation of the boundaries is judged from 

the character of an annular electron diffraction patterns in the corresponding TEM micrographs (in the 

inset of figure 7) with individual point reflections, as well as a fringe contrast at the boundaries. The 

average size of the microstructure elements of the 0.2% C steel and the 0.09% C–Mn–V steel after 

ECAP is about 375± 30 nm and 209.4±19 nm, respectively. The grain refinement in the 0.2% C steel 

by ECAP was almost the same as that by RS. In contrast, the extent of refining the microstructure of 

the 0.09% C–Mn–V steel after ECAP was significantly higher than that after RS. 

Figure 7. TEM micrographs and SAD patterns for the samples of 0.2% (a) and 

0.09% C–Mn–V (b) steels after ECAP. 

The thermal stability of strengthening of the 0.2% C steel and the 0.09% C–Mn–V steel after RS 

was studied according to the change in the microhardness during annealing. The values of 

microhardness increase with increasing the stage in each regime of RS (figure 8). After RS, the 

microhardness of the 0.09% C–Mn–V steel is higher as compared with that of 0.2% C steel (figure 8). 

The thermal stabilities of the 0.2% C steel and the 0.09% C–Mn–V steel after both regimes of RS are 

nearly the same. However, despite a significantly higher level of strengthening, the thermal stability of 

the samples after RS is lower than that after quenching and tempering. 
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Figure 8. The thermal stability of 0.09% C–Mn–V (a, b) and 0.2% C (c) steels after RS by 1 regime 

(a) and 2 regime (b, c).

Comparing the strength properties of both steels deformed by the second regime, we can 

observe that RS at first stage with a true strain of 0.6 leads to a slightly higher UTS of the 0.09% 

C–Mn–V steel and RS at the last stage with a true strain of 2.3 leads to a higher UTS of the 

0.2% C steel (figure 9, Table 2). It should be noted, however, that the values of UTS of these steels 

are nearly the same. Consequently, UTS in the range from 808 to 922 MPa was obtained for both 

steels at the final stage of RS with good elongation of  = 16-17%. 
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Figure 9. Mechanical properties of 0.09% C–Mn–V (а, b) and 0.2% C (c) steels after RS. 
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The strength properties of low- carbon 0.09% C–Mn–V steel after ECAP was significantly higher 

then those after RS (figure 10 a, Table 2). The ultimate strength of 0.2% C steel after ECAP was on 

the same level as that after RS (figure 10 b, Table 2). In contrast, the strength properties of low- 

carbon 0.09% C–Mn–V steel after ECAP are better then those after RS (figure 10), probably, because 

of the better structure refining and precipitation of fine special carbides during severe plastic 

deformation.  
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Figure 10. Mechanical 

properties of the 0.09% C–

Mn–V steel (а) and the 0.2% 

C steel (b) after ECAP. 
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Table 2. Mechanical properties of 0.09% C–Mn–V and 0.2% C steels 

Steels Regime /stage, σUTS, MPa σYS, MPa ,%

0
.0

9
%

 C
–
M

n
–

V
 s

te
el

 Initial state 594 480.8 27 

R
S

 

1 regime / 1 stage 558.4 460.4 28 

1 regime / 2 stage 727.8 678 26.6 

1 regime / 3 stage 818.5 808 17.1 

2 regime / 1 stage 653.9 603.8 28 

2 regime / 2 stage 689.6 654.2 21.8 

2 regime / 3 stage 866.7 846 16.5 

ECAP 984 940 14,3 

0
.2

%
 C

 s
te

el
 Initial state 600 460 21 

R
S

 2 regime / 1 stage 565 504.6 27 

2 regime / 2 stage 672.7 664 16.9 

2 regime / 3 stage 927.4 922.6 14.5 

ECAP 742 730 16,4 

4. Conclusions

The UFG microstructure evolution during RS in the low-carbon 0.2% C and 0.09% C–Mn–V steels

was studied and the difference between the microstructures developed by RS and SPD methods was

clarified.

1. The selected regimes of RS led to predominantly UFG microstructure in the 0.2% C steel and the

0.09% C–Mn–V steels with grain/subgrain sizes within the range of 285 - 375 nm. 

2. The grain refinement in the 0.2% C by ECAP and RS was almost the same. However, refining the

microstructure in the 0.09% C–Mn–V steel after ECAP was much pronounced than that after RS. 

3. For both steels UTS in the range from 800 to 920 MPa at admissible elongation of 16-17% were

obtained at the final stage of RS. 

4. The tensile strength of the low-carbon 0.2% C steel after ECAP does not exceed the tensile

strength of this steel after RS at the final temperature. In contrast, the strength of the 0.09% C–Mn–V 

steel after ECAP significantly exceeds that after RS. 
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