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A B S T R A C T   

The effect of Gd on the formation of a lamellar structure during ageing of quenched γ-TiAl based alloys was 
studied. Ti-47.1Al-1.8Nb-0.5Zr-0.3V-0.001Gd (0.001Gd) and Ti-46.9Al-1.6Nb-0.5Zr-0.5V-0.03Gd (0.03Gd) al
loys were quenched from the alpha-phase field and aged at 400–800 �C. After quenching, a small amount of 
Gd2TiO5 particles was found in both alloys. Grain boundary segregation of Gd in the 0.03Gd alloy quenched from 
the alpha-phase field was detected. The α2→γ transformation kinetics with the formation of γ lamellae was found 
to be noticeably faster in the 0.001Gd alloy. In addition, an increase in the Gd percentage led to a reduction of the 
interlamellar spacing for all ageing conditions. The effect of Gd on surface energy and diffusion rate are 
discussed.   

1. Introduction 

Gamma titanium aluminide based alloys are promising structural 
materials which can be used for gas turbine blades manufacturing [1]. 
However, oxygen impurities can deteriorate the structure and properties 
of these alloys substantially [2]. One of the ways to reduce the level of 
harmful impurities is micro-alloying with rare earth elements (REE). 
Since REE are active getters which decrease the content of dissolved 
oxygen, REE doping has a positive effect on mechanical properties of 
gamma titanium aluminide based alloys [2]. Because of extremely small 
solubility in both the γ- and α2-phases an addition of REE leads to the 
formation of oxides and aluminides particles [3]. 

Another effect of REE containing particles and possibly REE them
selves can be associated with a decrease both in the colony/grain size 
and interlamellar spacing [4–6]. For example [5], a study of the Ti–47Al 
binary alloy (at. %) doped with Y showed that the grain size decreases 
gradually from 1200 to 60 μm with Y addition to 1.0 at. %. The inter
lamellar spacing ranges were from 1.3 μm in Ti-47A1 alloy to 0.18 μm in 
Ti-47A1-1.0 Y alloy. It was noted that at an optimal concentration of Y 
0.3–0.5 at. %, the highest values of strength and ductility were observed. 

The use of high-temperature heat treatment can result in the disso
lution of REE - based particles [7], thereby allowing to control their size 

and distribution. However, REE (being surface-active elements) often 
form segregations at the boundaries and influence on the phase trans
formations in the solid state due to the corresponding surface energy 
reduction [8]. In addition, REE can change diffusivity [9], which will 
obviously influence the kinetics of phase transformations. The influence 
on the phase transformations kinetics is due a combined effect of i) 
increased rate of the γ phase nucleation and ii) decreasing in the lateral 
growth rate of α2/γ lamella. Meanwhile this effect of REE has not been 
investigated so far. 

In this paper the effect of Gd on the α2→γ transformation kinetics 
during ageing of quenched gamma titanium aluminide based alloys with 
different Gd content was evaluated. 

2. Materials and methods 

The ingots measured approximately 25 � 25 � 25 mm3 were pro
duced by vacuum arc melting. The actual chemical compositions of the 
Ti–Al–Nb–Zr–V-Gd alloys measured by SEM-based EDS are shown in 
Table 1. For the sake of simplicity, hereafter these alloys are referred to 
as 0.03 Gd and 0.001 Gd. Although there is also a slight difference in the 
Al, Nb and V content between the alloys, the influence of these varia
tions on the formation of a lamellar structure is minimal. 
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Dilatometry (Model DIL 402 C, Netzsch-Gerӓtebau GmbH, specimens 
measured 4 � 4 � 20 mm3) and differential scanning calorimetry (DSC) 
(SDT Q600 TA Instruments, specimens measured 4 � 4 � 1.5 mm3) 
analysis were used to determine temperatures of phase transformations. 
Specimens were cut from the as-cast ingot using an electric discharge 
machine and then mechanically polished. The measurements were car
ried out in the temperature range of 25–1450 �C in Ar atmosphere. 

Specimens used for heat treatment (measured 10 � 10 � 20 mm3) 
were sealed in quartz capsules contained also titanium chips as a getter 
and filled with pure argon. The samples were solute treated at T ¼ 1350 
�C (alpha phase field) for 2 h with subsequent water quenching. No 
cracks or noticeable microstructure gradients were observed in the 
quenched samples. The quenched samples were then aged at 400, 500, 

600, 700 or 800 �C for 5, 10 or 60 min; after the ageing the specimens 
were water quenched. 

The microstructure was examined using scanning (SEM) and trans
mission (TEM) electron microscopy. Specimens for SEM analysis were 
mechanically polished. SEM investigations were carried out using a FEI 
Quanta 600 FEG (field emission gun) microscope in a backscattered 
electron (BSE) mode; the microscope was equipped with an energy- 
dispersive (EDS) detector. Samples for TEM analysis were first me
chanically ground to ~ 100 μm thickness and then electro-polished in a 
mixture of 5% perchloric acid, 35% butanol and 60% methanol at 27 V 
and � 32 �C using a twin-jet TenuPol-5 Struers. TEM investigations were 
carried out using a JEOL JEM - 2100 microscope operated at 200 kV and 
equipped with an EDS detector. Phase diagrams for the Ti–XAl-1.6Nb- 
0.5Zr-0.5V and Ti–XAl-1.8Nb-0.5Zr-0.3V (X ¼ 35–50) alloys were 
calculated using a Thermo-Calc software (version TCW5, database 
TTTIAL). Note that the TTTIAL database does not include Gd and 
therefore it has been omitted from the thermodynamic calculations. 

Table 1 
Chemical composition of the program alloys, in at. %.   

Ti Al Nb Zr V Gd 

Alloy 1 Bal. 46.9 1.6 0.5 0.5 0.03 
Alloy 2 Bal. 47.1 1.8 0.5 0.3 0.001  

Fig. 1. Microstructure of the as-cast 0.03 Gd alloy: a) 
an overview at low magnification; b) the Gd2TiO5 
and GdAl3 particles at higher magnification; c) a 
particle of the Gd2TiO5 phase inside a α2þγ colony 
(bright field); d) a dark-field image of the Gd2TiO5 
phase particle and the corresponding selected area 
electron diffraction (SAED) pattern (inserted); e) 
nearly equiaxed GdAl3 particles at boundaries be
tween α2þγ colonies (bright field), f) a dark-field 
image of the GdAl3 phase particles. (a–b) SEM-BSE 
images; (c–f) TEM images.   
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3. Results 

3.1. As-cast condition 

Microstructure of the as-cast 0.03 Gd alloy consisted mainly of α2þγ 
lamellar colonies; Gd-rich particles were located both within and at the 
boundaries of the colonies (Fig. 1). The particles were identified as 
Gd2TiO5 (Fig. 1a–d) or GdAl3 (Fig. 1b, e, f). The size and volume fraction 
of the Gd-rich particles were 0.1–4.5 μm and 1.3%, respectively. The 
particles were heterogeneously distributed (Fig. 1). The GdAl3 phase 
particles predominantly located at boundaries (Fig. 1b, e, f) had both a 
plate-like (Fig. 1b) and spherical morphology (Fig. 1e and f). They were 
sometimes observed in clusters (Fig. 1e and f). The volume fraction of 
the GdAl3 phase was ~0.5%. The Gd2TiO5 particles were equiaxed and 
distributed more homogeneously in the microstructure (Fig. 1a–d). The 

volume fraction of the Gd2TiO5 phase was ~0.8%. The size of the α2þγ 
colonies was approximately 150 μm (Fig. 1a and b) with the average 
interlamellar spacing (λ) of 230 nm (Fig. 1c and d). 

The microstructure of the as-cast 0.001Gd alloy mostly consisted of 
α2þγ lamellae colonies with separate particles of γ and β phases. In 
addition, homogeneously distributed Gd2TiO5 particles measured 
0.5–8.5 μm with a volume fraction of ~0.1% can be found (Fig. 2). The 
lamellar colonies’ size was approximately 260 μm (Fig. 2a) with the 
average interlamellar spacing of 450 nm (Fig. 2b and c). 

3.2. Quenched condition 

The α→αþγ phase transformation temperature in the 0.03 Gd alloy 
was determined by DSC or dilatometry to be 1327 �C or 1330�С, 
respectively. In the 0.001 Gd alloy the phase transformation 

Fig. 2. Microstructure of the as-cast 0.001Gd alloy: a) an overview at low magnification; b) an α2þγ lamellar structure; c) a Gd2TiO5 phase particle inside an α2þγ 
colony and the corresponding SAED pattern; (a) SEM-BSE images; (b–c) TEM images. 

Fig. 3. Microstructure of the 0.03 Gd alloy after quenching from the α-phase field: a) SEM-BSE image; a white line and arrow across a border indicates the area and 
direction of Gd distribution measurement (the result is shown in Fig. 3c); b) TEM bright-field image of the α2 phase with the corresponding SAED pattern; c) dis
tribution of Gd across the grain boundary in Fig. 3a. 
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temperatures were quite similar: 1330 �C and 1334 �C per DSC and 
dilatometry, respectively. Therefore, both the alloys were solution 
treated at 1350 �C. Note that T ¼ 1350�С is also above the solvus 

temperature of the GdAl3 phase [10]. Fig. 3 shows an almost entirely 
single α2 phase in the 0.03 Gd alloy after soaking in the alpha-phase 
field. Ordering of the metastable α-phase during quenching from the 
alpha phase field was expected to result in the formation of the α2-phase 
[1,11]. TEM bright-field image with the corresponding SAED pattern 
(Fig. 3b) confirmed the formation of the α2 phase. After quenching, 
GdAl3 particles were not detected however a small amount (~0.8 vol %) 
of the Gd-rich oxides survived (Fig. 3a). SEM-EDS data demonstrates a 
20-times increase in the gadolinium content across a grain boundary 
(Fig. 3a, c), thus suggesting Gd segregation at the boundaries. 

The microstructure of the 0.001 Gd alloy after solute treatment at 
1350 �C (α-phase field) for 2 h consisted of equiaxed α2 grains (Fig. 4). 
The size and volume fraction of the Gd2TiO5 particles after quenching 
did not change compared with the as-cast condition (Fig. 4). 

3.3. Effect of ageing 

The effect of temperature and time of ageing on the interlamellar 
spacing (λ) in the 0.03 Gd alloy is shown in Fig. 5. An isolated γ-phase 
lamella of 50–1000 nm in length inside a grain of the α2-phase was 
observed after ageing of the alloy at T ¼ 400 �C for 5 min (Fig. 5a). An 
increase in the soak time to 10 min led to a complete α2→γ trans
formation (Fig. 5b) without any noticeable changes after 60 min treat
ment (Fig. 5c). Ageing at higher temperatures (500–600�С) resulted in a 

Fig. 4. SEM-BSE image of the 0.001 Gd alloy microstructure after quenching 
from the α-phase field. 

Fig. 5. TEM bright-field images of the 0.03 Gd alloy after ageing at 400–800C for 5, 10 and 60 min. SAED pattern in Fig. 5a is shown for the γ and α2 phases.  
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complete filling of the α2 phase grains with the γ-phase lamellae already 
after 5 min soaking (Fig. 5d, g, k). An increase in the soaking time 
resulted mainly in some increase in the interlamellar spacing (Fig. 5e, f, 
h, j). A significantly higher interlamellar spacing was obtained after 
ageing at 800 �C, however, qualitatively the dependence of spacing on 
soaking time at 800�С was similar to that at lower temperatures. 

The microstructure of the 0.001 Gd alloy after ageing (Fig. 6) was in 
general close to that in the 0.03 Gd alloy (Fig. 5). For example, after 5 
min ageing only a limited number of γ lamellae in the α2 matrix was 
found in the 0.001 Gd alloy (Fig. 6a) (however, the amount of the γ 
phase was much higher than in the 0.03 Gd alloy (Fig. 5a)). An increase 
in the ageing time and/or temperature led to the entirely lamellar α2þγ 
microstructure. The interlamellar spacing also gradually increased with 
the annealing temperature and time (Fig. 7b, d), similarly to the 0.03 Gd 
alloy (Fig. 7a, c). It should be noted, however, that the increase in the 
interlamellar spacing with temperature in the 0.001 Gd alloy was much 
more gradual than that in the 0.03 Gd alloy where significant growth 
was found at 800 �C only. Besides, the absolute values of λ after the same 
processing were ~2–3 times higher in the alloy with the lower amount 
of Gd (Fig. 7). Note also that new Gd-rich phase particles were not 
formed in both alloys during the ageing (in attrition to those which were 
seen in the as-quenched condition). 

4. Discussion 

The obtained data elucidate the effect Gd on the α2→γ trans
formation kinetics (Figs. 5–7) and some structural parameters in two 
gamma titanium aluminide based alloys that worth detailed consider
ation. The major difference between the program alloys was the amount 
of Gd-rich phases in the as-cast and quenched conditions. The volume 
fraction of Gd-rich phases in 0.001 Gd and 0.03 Gd alloys was 0.1% and 
1.5%, respectively. In the 0.03 Gd alloy the total volume fraction of the 
Gd-rich phases included 0.8% of the Gd2TiO5 phase and 0.5% of the 
GdAl3 phase. After annealing in the α-phase field the volume fraction of 
the Gd2TiO5 phase in the 0.001 Gd and 0.03 Gd alloys was 0.1% and 
0.8%, respectively. It should be noted that the as-cast 0.001Gd alloy 
(Fig. 2a) contained laths of the metastable β-phase which was not pre
dicted by the calculated phase diagram (Fig. 8b). Probably, the β-laths 
formation was caused by non-equilibrium crystallization. However, it 
was not found in 0.03Gd alloy. 

The alloys contained also slightly different amounts of Nb, Zr, and V 
(Table 1). Since the content of these elements can have some effect on 
phase transformations, it is interesting to clarify the influence of these 
variations in chemistry on phase stability in the alloys. For example, the 
effect of Nb on the interlamellar spacing in a binary Ti–45Al alloy [12] 
was ~30% (from 270 to 350 nm) for an increase in the Nb content from 
0 to 10 at. %. The influence of V (which belongs to the same group of 

Fig. 6. TEM bright-field images of the 0.001 Gd alloy after ageing at 400–800C for 5, 10 and 60 min. SAED pattern in Fig. 5a is shown for the γ and α2 phases.  
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elements in the periodic table) was similar. Since the changes in the 
concentrations of these elements in the alloys are oppositely directed, 
the overall effect of this factor can be considered insignificant. In 
addition, variations in the chemical composition does not affect signif
icantly elastic modulus thereby confirming a small effect of the chemical 
mismatch on the properties of the alloys; for example in Ref. [13] an 
increase in the content of Nb in Ti–25Al-xNb alloys from 4.9% to 20.3% 
decreased Young’s modulus from 133 to only 128 GPa (~3.7%). 

To get more detailed information on possible effect of chemical 

composition variations on the phases in the alloys, we have produced 
corresponding equilibrium phase diagrams. Phase diagrams were con
structed for different concentrations of Nb, Zr and V (1.8 or 1.6 at. % Nb 
in the 0.03 Gd or 0.001 Gd alloys, respectively; 0.5/0.5 at. % Zr, and 
0.3/0.5 at. % V, respectively) and variable percentages of Al in the range 
35.0–50.0 at. % using the Thermo-Calc software (Fig. 8, Table 2). Note 
that the available commercial thermodynamic database for TiAl-based 
alloys (TTTIAL) does not include Gd which therefore was excluded 
from the consideration. The sequence of the phases which form in the 

Fig. 7. Interlamellar spacing (λ) as a function of (a, b) soak time at different temperatures or (c, d) temperature at different soak times; (a, c) - 0.03 Gd alloy, (b, d) - 
0.001 Gd alloy. 

Fig. 8. Phase diagrams for the Ti–Al-1.6Nb-0.5Zr-0.5V (a) and Ti–Al-1.8Nb-0.5Zr-0.3V (b) alloys calculated by the Thermo-Calc software.  

V.S. Sokolovsky et al.                                                                                                                                                                                                                          



Intermetallics 120 (2020) 106759

7

alloys during crystallization included the β, α, γ, and α2 phases. The 
solvus temperatures of these phases were denoted as Tβ, Tα and Tγ, 
respectively. The eutectoid reaction temperature at which the α→α2þγ 
transformation occurred was denoted as Te. 

Table 2 also contains phase transformation temperatures measured 
using both by DSC and dilatometry method. A comparison of the 
calculated and experimental data shows somewhat higher phase trans
formations temperatures obtained by the Thermo-Calc software. Note 
that some difference between measured and predicted temperatures of 
phase transformations for different γ-TiAl based alloys has been already 
reported earlier [14,15]. Nevertheless, reasonable agreement between 
the calculations and experiments was observed. Also, the calculated 
values for the two alloys were very close, which suggests that variations 
in Nb, Zr, and V are unlikely to affect the phase transformation tem
peratures considerably. 

Besides, experimental data (i.e. DSC and dilatometry) showed very 
close values of Те and Tγ in the alloys (Table 2). Therefore, Gd most 
probably does not affect the α→γ and α→α2þγ transformation temper
atures in the examined alloys. This assumption is in reasonable agree
ment with the observed microstructures, where almost identical phases 
were found in both alloys (Figs. 1–8). 

Although after ageing the alloys were composed of the same α2 and γ 
phases, a significant effect of Gd on the kinetics of α2→γ transformation 
was revealed. An increase in the Gd content tended to retard the α2→γ 
transformation kinetics. After ageing at T ¼ 400 �C for τ ¼ 5 min 
microstructure of the 0.03 Gd alloy consisted of individual lamellae of 
the γ-phase in grains of the metastable α2-phase (Fig. 5a). Meanwhile in 
the 0.001 Gd doped alloy the number of the γ-laths was considerably 
greater (Fig. 6a). The thickness of the γ-phase lamellae was also 
different: 14 and 40 nm in the 0.03 Gd and 0.001 Gd alloys, respectively. 
The interlamellar spacing as a function of ageing temperature and soak 
time was not similar for the alloys with different content of Gd (Fig. 7). 
The greater amount of Gd reduced interlamellar spacing in all ageing 
conditions; however a noticeable increase in the interlamellar spacing in 
the 0.03 Gd alloy was noted at 700 �C, whereas in the 0.001 Gd alloy the 
onset of this increase occurred at 600 �C. 

In γ-TiAl based alloys the formation of the γ phase in the metastable 
α2 is associated with lattice shear [13]. However for the formation of the 
gamma phase nucleus and their growth a local enrichment with 
aluminum is necessary that requires activation of diffusion processes. 
The dissolution of the GdAl3 particles during the solution treatment led 
to the redistribution of Gd along grain boundaries (Fig. 3) that can 
change the surface energy of grain boundaries and grain-boundary 
diffusion. Therefore it can be assumed that REE, which have low solu
bility in metals [16], in particular in titanium [17], are located in the 
boundary, thereby reducing the level of surface energy [6] and, conse
quently, facilitating the formation of new phases [18]. However, the 
obtained result showed retardation of the α2→γ transformation. Most 
likely the Gd atoms at grain boundaries inhibit diffusion of Al thereby 
preventing another important condition for the transformation – gath
ering of sufficient amount of Al for the γ-phase formation. This conclu
sion is in agreement with a slight increase in the γ-phase lamellae 
thickness during ageing (Figs. 6 and 7). 

Thus, the main effect of Gd on the α2→γ phase transformation can be 
ascribed to the hindering of the γ-phase nuclei formation due to an in
hibition of diffusion and necessity of increased time/temperature for the 
attaining of a required concentration of Al. This leads to some retarda
tion of the transformation kinetics, an increase in the nucleation rate of a 
new phase, and slower growth of particles during ageing. This was 
expressed earlier as an assumption in the work [6]. However, as it was 
observed in γ-TiAl-based alloys [19,20], diffusion becomes more active 
at temperatures 700–800 �C resulting in an increase in the interlamellar 
spacing in the 0.03Gd alloy due to the Gd atoms redistribution. 

5. Conclusions  

1. The structure of the as-cast and quenched from 1350 �C Ti-47.1Al- 
1.8Nb-0.5Zr-0.3V-0.001Gd and Ti-46.9Al-1.6Nb-0.5Zr-0.5V-0.03Gd 
alloys was investigated. Both program alloys had quite a similar 
structure in the as-cast condition mostly composed of α2þγ lamellar 
mixture. In the 0.03Gd alloy, 1.3% of Gr-rich Gd2TiO5 or GdAl3 
particles were found, whereas in 0.001Gd alloy only 0.1% of 
Gd2TiO5 was observed. After quenching from 1350 �C, both alloys 
had almost entirely α2 phase structure, however, Gd2TiO5 particles 
remained intact. The similar phase composition of the alloys agrees 
with the Thermo-Calc predictions.  

2. After quenching, the alloys were aged at 400–800 �C to produce γ 
lamellae in the α2 matrix. The thickness of the γ lamellae in the 0.03 
Gd alloy was noticeably lower than in the 0.001 Gd alloy. Also, after 
ageing at 400 �C for 5 min much smaller amount of γ lamellae was 
found in the 0.03 Gd alloy. The retardation of α2→γ phase trans
formation kinetics was attributed to inhibition of diffusion in the 
alloy with higher Gd percentage. 
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