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ABSTRACT. The strong maximum principle is proved for solutions of the inequality Au > 0 on a
stratified set.

If u is a smooth function in a domain ¢ C R™ and X is a nontrivial maximum point of u (i.e, a
local maximum point such that in any its neighborhood, the function w is not an identical constant),
then it is easy to show that there exists an arbitrarily small r» > 0 such that the integral of the exterior
normal derivative of the function u calculated over the sphere of radius r centered at X is negative.

In this work, we give the proof of an analogous assertion for the case of a smooth function on a
stratified set, and based on it, we prove the strong maximum principle for solutions of the inequality
Au > 0 with Laplacian on a stratified set. The proof of this fact, which was announced in [2],
was previously obtained only for elliptic inequalities on two-dimensional stratified sets [1] by using a
principally different approach.

1. Main Definitions

The general definition of a stratified set Q0 can be found in [3]. The definition, which essentially
narrows the class of stratified sets, but which is more convenient for the statement of boundary-value
problems on them, can be found in [4]. Here, we restrict ourselves to a narrower class. Precisely,
we assume that @ C R” is a connected set composed of finitely many open (in planes of minimal
dimensions containing them) convex polyhedra (strata) ox; (k is the stratum dimension, and j is its
serial number under independent enumeration of strata of every dimension) that are adjacent to each
other as in a simplicial complex (see,e.g., [5]), i.e., it is assumed that the boundary doy; consists of
strata of lesser dimensions, and the closures of two arbitrary strata either have empty intersection or
intersect along a common face.

In Q, let us isolate an open and connected (in the topology on € induced from R™) subset
composed of strata of the set  such that Qp = Q. The difference €\ Qg is the topological boundary
of €y in this case, and, therefore, it is denoted by 9€q; the case 9y = () is not excluded.



For the problems considered, on the set £, it is convenient to introduce the so-called stratified
measure. For w C €, it is defined by the formula

pw) = p(w N ogy), (1)

Okj

where py is the standard k-dimensional Lebesgue measure on the stratum og;. The sets whose in-
tersections with all strata are Lebesgue measurable turn out to be measurable in such a measure.
By definition, the measure of zero-dimensional stratum is equal to 1. The Lebesgue integral of a
measurable function f: € — R with respect to such a measure is the sum
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of Lebesgue integrals over separate strata. In what follows, we omit du and duyg, in writing the integrals.

2. Auxiliary Formula

Let X € Q. If » > 0 is less than the distance to all strata that do not contain X in their closures
(such r are said to be admissible), then the set

S,(X) = {Y eQ: |IY = X[ =1}

is called the sphere; it is the intersection of sphere S‘T(X ) of the ambient space with . The corre-
sponding open ball is denoted by B,(X). By definition, the m-dimensional part of the sphere S,(X),
which is denoted by S;”(X), is the union of its intersections with all (m + 1)-dimensional strata. The
sphere can also be considered as a stratified set; as its m-dimensional strata, it is natural to consider
the connected components of the set S7*(X). The integral over the sphere is calculated with respect
to the stratified measure mentioned above. For admissible r; and rg, the spheres S, (X) and S,,(X)
and also their parts S(X) and S;7(X) are similar. Owing to this, we easily obtain the formula
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S (X) S7(X)

where v is the exterior normal to the sphere S,.(X) at the points of the sphere S,(X). Here, it is
assumed that X € g, and the function u is assumed to be continuous on €y as a whole (this property
is not needed in this section, but we will need it in what follows), differentiable inside each strata
ok;j C Qo and such that the integrals in the right-hand side of (2) converge for all m. The set of such
functions is denoted by C1(€).

Multiplying both sides of the formula (2) by " and summing in all m, we obtain

d
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S-(X) m=0 S7(X)

In fact, the stratified sphere need not contain parts of all dimensions. Therefore, to the right, there
formally can arise extra summands. To avoid confusions, we consider the integrals over empty S7*(X)
to be equal to zero.

3. Necessary Extremum Condition

We present here the result, which we consider the basis of our proof of the strong maximum principle.



Theorem 1. Let X € Qg be a nontrivial local mazimum point of a function u € C1(Qq). Then there
exist arbitrarily small admissible r > 0 such that
ou
ov
Sp(X)

< 0. (4)

We call X a nontrivial local maximum point of the function u if for all points ¥ close to it, the
inequality u(Y) < u(X) holds, and in any neighborhood of X, the function u is not constant.
For the proof, we need the following two assertions.

Lemma 1. Let fy and f1 be functions continuous on [0;a] and continuously differentiable on (0;al
such that fo(0) = f1(0) = 0. If the function fo is nonpositive and

rfi(r) + fo(r) =0, (5)
then the functlion f1 is nonnegalive.

Proof. Integrating (5) over the closed interval [e;7] (0 < e < r < a), after obvious transformations, we
obtain

PA0) = (@) = [ Filo)dp+ folr) = fo(©) = 0.
Then, as ¢ — 0, we obtain 1
rh(r) = [ Ao+ fol) 2 0
and, finally, taking into account that fo is ngnposi‘cive7 we arrive at the inequality

> [ 5iordp < pio.
0

By the mean value theorem, for a certain £ € [0;r), the latter inequality is rewritten as f1(&) < fi(r).
Let us show that the greatest lower bound (denoted by £*) of those £ for which the latter inequality
holds coincides with the point 0. On the contrary, replacing r by £*, we obtain

é‘*
gi* / Aoy dp < F1(69),

which implies the existence of €% € [0;¢*) such that f1(¢%) < f1(¢*) < fi(r). The latter contradicts

the definition of £*. Therefore, £&* = 0, and hence 0 = f1(0) < f1(r) for all r € [0;al. O
Lemma 2. Let fo,..., fn be functions continuous on [0;a] and continuously differentiable on (0;al
such that f;(0) =0, ¢ =0,...,n. If the functions f; are nonpositive and

0 fu(r) T fa () e f(r) 20, (6)

then fi(r) =0 for all i.

Proof. For n = 0, the assertion is trivial. For n = 1, it easily follows from the previous lemma. Let us
show how we can perform the proof by induction.
Let us define the set of functions ¢y, ..., ¢,_1 in a recursive way setting

Gk = rdp—1+ fook — /¢k—1(ﬂ)dp (7)
0



for k > 1 and ¢g = f,,. Then inequality (6) can be transformed into the form r¢/,_(r) + fi(r) > 0.
Indeed,

P T L e fo =S ) fr) e D S
=r(r(. (rdy + o)+ D) fo = (rdh + frg) + o+ 1)+
= =1l + fo

Here, we repeatedly used formula (7). The same formula implies ¢;(0) = 0 for all i. Using the fact
that fo is nonpositive and Lemma 1, we obtain ¢,—1(r) >0 or

0n-alr) 1 10) = [ Gumalpldp = 0
0
and, the more so,
0nalr) 2 3 [ ualo) dp.
0

Arguing as in Lemma 1, we obtain from this that ¢,_2(r) > 0. Continuing these constructions further,
we conclude that ¢g(r) = fn(r) > 0. But, by condition, f,(r) < 0. Hence f,(r) = 0, and inequality
(6) reduces to

PPy e fo(r) > 0.

The induction step is made, and the further arguments are obvious. O

Proof of Theorem 1. On the contrary, there exists a positive number @ such that the integral in the
left-hand side of (4) is nonnegative for r € (0;a]. But, by (3), this implies the inequality r¢f(r) +
rd=Lfh () + -+ fi(r) > 0 for r € (0;al, where

For m = 0,1, ...,d. Without loss of generality, we can assume that u(X) = 0 at the maximum point.
Then the functions f,, are nonpositive and are defined by zero for r = 0 by continuity. Therefore, all
the conditions of Lemma 2 hold for them. Hence f,,(r) =0 for all m. This immediately implies u =0
in the ball B,(X), which contradicts the nontriviality of the maximum at the point X. O

Note that inessential modifications in our arguments lead to the following generalization of Theo-
rem 1.

Theorem 2. Let p be a nonnegative function constant on each stratum ( “stratified” constant). Let
X € Qg be a nontrivial localmazimum point of a function u € C1(Qq). Then there exist arbitrarily
small admissible r > 0 such that
ou
— <0 8
P (8)
Sr(X)

under the assumption that p is positive on the so-called free strata (not adjacent to other strata by
their interior points).

In the next section, this theorem is applied to the proof of the strong maximum principle for elliptic
inequalities.



4. Divergence and Laplacian on Stratified Set

A vector field F on (1 is said to be tangent to 2 if for any stratum oy; C € and any point X € oy,
the vector ﬁ(X) belong to the tangent space T'xoy; of ok at the point X; at zero-dimensional strata,
it is natural to assume that F =0.

The divergence of the field F' at an arbitrary point X € {g is defined by the relation

- _ Pp(S(X))

(VF)(X) = lim

P h(B (%) ®

where ® (S, (X)) denote the flow of the vector field F through the sphere of admissible radius. This
flow is composed of flows through separate m-dimensional parts of the sphere (m = 1,...,d). The
summation of these separate flows yields

va(s,(0) — [ Fovdn
Sr(X)

where 7 is the exterior normal to S,(X) and g is the stratified measure on the sphere S,(X), which
is stratified by the method shown in Sec. 2.

The set of differentiable vector fields (in the limits of each stratum) having divergence on € is
denoted by C(€2). The belonging of a field to C'(€2) does not imply its continuity as a whole on
{o; i.e., a vector field on g is a tuple of independent fields on separate strata. One can show that if
X € 0p_14, then

(VE)X) = (Vi F)(X) + ) 7 F

Okim0k—14

(X)), (10)
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where Vj_ is the classical divergence operator on ¢;_1; and the writing of the form oy; > ox_1;
means the adjustment of the stratum oj_1; to orj. The vector ¥/ is the unit normal to ox_1; at the
point X directed inside the stratum og;. In what follows, for example, for a function u : 2 — R,

the notation U‘F(X) (X € ok_1; > 0k;) means the extension by continuity to the point X of the
j

restriction u

of the function u to og;. Of course, it is assumed that such an extension exists; this is
Okj
the case where the above restriction is a function uniformly continuous on o;. If u is not continuous

as a whole on €2, then, in general, u F(X) # u(X).

Let v : 29 — R be continuously differentiable inside each stratum. Then we can consider the vector
field Vu whose restriction to each stratum og; from g coincides with the gradient field Vgu. Note
that we do not assume any connection between the restrictions of the function u to separate strata,
and, therefore, Vu is in fact a tuple of independent vector fields (one field on each of the strata). If
Vu belongs to the class C1(€g), then we can consider the operator Au = V(Vu), which is naturally
called the Laplace operator. As usual, we use the same symbol V for the gradient and the divergence
having agreed to treat it as the divergence when it is applied to a vector field and as the gradient when
it is applied to a scalar-valued function. Everywhere in what follows u is assumed to be continuous
on €. In this case, if Vu € C1(Qp), then we write u € C%(Qp).

Along with the operator A, we also consider the operators of the form A, acting by the formula
Apu = V(pVu), where p is the stratified constant. If p assumes only zero and unit values, then the
corresponding operator A, can be considered as an analog of the Laplace operator. The simplest
case is obtained when p is different from zero only in the so-called free strata (see the end of Sec. 3);
these are, e.g., the strata of higher dimension. Such a Laplacian is said to be “soft” in contract to the
“rigid” one corresponding to p = 1 on the whole €}g. For the soft Laplacian, the proof of the strong
maximum principle is not very difficult and was obtained long ago (see, e.g., [4] and the bibliography



therein). The results of this works can be applied to all A,. As in the presented theorem, we assume
that p is positive on all free strata. On the other strata, the vanishing of p is admissible.

5. Strong Maximum Principle

On the basis of Theorem 2, we obtain a very simple proof of the strong maximum principle for
solutions(subharmonic functions) of the inequality

Apu >0 (11)

on the stratified set. Even being applied to the classical case of the Laplacian in the domain, our proof
turns out to be simpler than the well-known standard proofs.

Note that sometimes by the strong maximum principle one usually understands the assertion that a
nonconstant solution of inequality (11) cannot attain the global maximum inside the domain. However,
as is known, for solutions of the inequality Au > 0, the strengthened maximum principle holds,
which asserts that a solution of this inequality different from a constant cannot have local maxima
inside the domain. In this work, by the strong maximum principle we mean an analog of the latter
(strengthened) maximum principle. However, it does not hold in the presented formulation, since a
solution of inequality (11) can be constant on the whole stratum (thus, it entirely consists of local
maximum points if it is not adjacent to other strata by its interior points) and not constant everywhere
on ()y. However, the following assertion holds.

Theorem 3. A solution of inequality (11) cannot have nontrivial local mazimum points in Qo if p
satisfies the conditions presented al the end of the previous section.

Proof. For the operator A, on the stratified set, an analog of the Green formula holds (see [4]), which
implies that inequality (11) implies

ou
— > 0.
P 9y =
Sr(X)
However, by Theorem 1, the latter inequality cannot hold at a nontrivial local maximum point of the
function « for all sufficiently small » > 0. O
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