HAMILTONIAN DYNAMICS OF BIAXIAL NEMATICS WITH THE
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We consider the dynamics of biaxial nematics following the Hamiltonian approach. The hydrodynamic
parameters related to the broken symmetry are introduced in terms of the distortion tensor. The densities
and fows of additive integrals of motion are represented in terms of the thermodynamic potential. We
obtain the ideal hydrodynamic equations and study the spectra of collective excitations of biaxial nematics

taking the molecular shape into account.
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1. Introduction

In the Hamiltonian approach in the study of the dynamics of condensed media, the structure of the
Poisson brackets of the reduced-description parameters plays the fundamental role, completely determining
the macroscopic state of the medium. The choice of the parameters of the reduced description in nematic
liquid crystals is stipulated by several factors. Some hydrodynamic parameters are related to the symmetry
properties of the Hamiltonian, which is manifested in the existence of dynamical equations originating
from the differential conservation laws. Another factor affecting the set of hydrodynamic parameters is the
molecular shape. In liquid crystals, the molecular shape is related to the structure of the hydrodynamic
equations. An additional hydrodynamic quantity in uniaxial nematics is the anisotropy axis determined by
the molecular anisotropy [1]. As shown in [2] and [3], the structure of the Poisson brackets of hydrodynamic
parameters in such nematics is different for disklike and rodlike molecules. The hydrodynamics of biaxial
liquid crystals was studied in [4]. This class of liquid crystals is characterized by a complete spontaneous
breaking of the symmetry under rotations in the configuration space O(3). But these papers do not present
explicit expressions for all reactive densities of flows of additive integrals of motion in terms of the energy
functional and do not explain how the molecular shape affects the dynamical equations for this class of
liquid crystals. In addition to these parameters, several scalar parameters related to the molecular shape
can arise [5], [6].

Finally, the set of reduced-description parameters is related to the character of spontaneous symmetry
breaking in the system. The statement of elasticity theory as a division of continuum mechanics is based on
the idea that the translational symmetry can be broken spontaneously. An additional macroscopic quantity,
the deformation tensor, is introduced as a function of the distortion tensor [7]. This quantity completely
characterizes the character of continuum deformation. The hydrodynamic theory of liquid crystals is also
a division of continuum mechanics in which the symmetry under rotations (and under translations in some
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cases) in the configuration space is broken spontaneously. It was shown in [3] and [5] that the additional
hydrodynamic parameters related to this symmetry breaking can be represented in terms of the distortion
tensor for several uniaxial and biaxial liquid crystals.

In this paper, we introduce the additional quantities related to any spontaneous breaking of the sym-
metry under rotations in the configuration space in terms of the distortion tensor, represent the densities
and flows of additive integrals of motion in terms of the thermodynamic potential, obtain the ideal hy-
drodynamic equations, and study the spectra of collective excitations of biaxial liquid crystals taking the
molecular shape into account.

2. Poisson brackets in the dynamical theory of liquid crystals

In the Hamiltonian approach, the equations of motion for the reduced-description parameters can be
written as

L)boz(x) - {Wa(x)7H(4p)}7 (21)

where H(¢) is the Hamiltonian of the system. The Poisson bracket of arbitrary functionals is determined
oB

{A B} = /d3 /d3 ! EREDE

where the Poisson brackets of the quantities ¢, (z) are antisymmetric under permutations and satisfy the

by the relation
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Jacobi identity. The relations
{A, B} = —{B, A}, {AB,C} = A{B,C} + B{A, C},
{A{B,C}} +{B,{C,A}} + {C,{A,B}} =0

therefore hold for arbitrary functionals.
The conservation laws can be written in differential form as

Galw) = =Vilan(), (2.3)
where (,(z) are the functions (), 7 (z), or p(x), i.e., the densities of additive integrals of motion (¢(x)
is the energy density, a = 0; () is the density of the kth momentum component, a = k; and p(z) is the
mass density, a = 4) and (,x(x) are the functions ¢ (), t;1(x), or ji(z), i.e., the corresponding densities of

flows of additive integrals of motion. As shown in [8], the following representation of densities of flows of
additive integrals of motion holds in terms of the Poisson brackets of the corresponding densities (,(z):

Car(z) = —bape(z /d% xk/ dA{Ca(y),e(y)}, a#0, (2.4)

Con(z /d% xk/ dA{e(y),e(y")},

y=x+ ', Y — (1 =X

We consider the distortion tensor



which is determined via the displacement vector wg(z) relating the Lagrangian coordinate £ to the Euler
coordinate z; = & + ug(z). The distortion tensor by;(x) given by (2.5) determines the orientational and
translational states of an arbitrary continuous medium. The true density p(z) of the matter in an arbitrary
state is determined in terms of the distortion tensor by the relation [3],

plz) = Edet‘bij(x) (2.6)

where p is the density of the matter in the nondeformed state. The Poisson brackets of the momentum
densities, the mass density, the entropy density o(z), and the distortion tensor can be written as [3]

{mi(z),0(2")} = z)V;d(x — '), {mi(z), by (z')} = —bpi(z)V;6(z — 2),
{7@(95)7 7 (x/)} =7;(2)Vié(z — 2') — (2" )V;6(z — 2'), (2.7)
[mse), o)} = pla)Vid(a — '),

These Poisson brackets underlie the construction of nonlinear hydrodynamic-type equations for normal
liquids, crystals, and liquid crystals. The influence of the molecular shape in liquid crystals on the dynamical
properties is manifested in different forms of the dependence of energy on the distortion tensor. In what
follows, considering specific examples, we show how the form of the reduced-description parameters can be
chosen depending on the molecular shape. We next take into account that the Hamiltonian of the system

o

In this case, we have mj(z) = np(z), where m is the particle mass.

has the Galilei-invariant form

(p(a). o) by <x>>). (2.8)

3. Dynamics of biaxial nematics with disklike molecules

We consider condensed media with a spontaneously broken symmetry under rotations in the configu-
ration space. Liquid crystals belong to this class of condensed media. First, we note that the state of an
isotropic liquid is described by dynamical variables such as the mass, momentum, and entropy densities.
To have these macroscopic parameters is insufficient for describing the nematic phase of liquid crystals
because a spontaneous breaking of the rotational symmetry due to the anisotropy of molecules can occur
in this state. In [4], two anisotropy axes representing the anisotropy property of molecules were introduced
as additional reduced-description parameters in the case of biaxial nematics. Because the molecules have a
complicated shape, a larger number of parameters is required for their macroscopic description. Additional
macroscopic parameters for uniaxial liquid crystals are the molecular length in the case of rodlike molecules
and the disk area in the case of disklike molecules. The molecular shape in biaxial liquid crystals can be
determined by the lengths of the major and minor anisotropy axes and the angle between them. In what
follows, the parameters used to describe the molecular shape are called the conformational degrees of free-
dom. This extension of the set of reduced-description parameters for liquid crystals is due to the anisotropy
properties and the conformational nonrigidity of molecules [5], [6]. We begin our study of biaxial liquid
crystals with the case of disklike molecules. Let m(z) and 7(z) be the unit orthogonal vectors determining
the anisotropy axes and characterizing the breaking of rotational invariance by the relations

7 (3.1)




where the vectors @(z) and b(z) are represented in terms of the distortion tensor,

a;(x) = e1pby; (), bi(x) = eanbr; (). (3.2)

The constant vectors €, and &5 determine the directions of the anisotropy axes and the dimensions of
disklike molecules in a nondeformed liquid crystal. Any deformation of the medium results in changes in
the directions of the anisotropy axes and in the molecular dimensions, and these changes are described by
the distortion tensor. According to formulas (2.7), (3.1), and (3.2), we obtain the Poisson brackets of the
momentum density 7 (z) and the unit vectors ng(z) and my(z):

{mi(2),ny(a")} = 8z — 2")Viny(x) + firg(2)VAd(x — '),

{mi(x), m;(")} = 6(z — ") Vimy(x) + girs(z')VAS(z — a'),

where the functions f;x;(x) and g;»;(x) are determined by the relations

finj(z) = ni(x)éjﬁ (ﬁ(x)) — pla)m;(x) (nl(x)mk(x) + n>\(95)7m(95))7
gixg(x) = mi(2)855 (M) — (1 = p(2))ns(@) (ni(z)ma (@) + na(z)mi(z)), (3.4)

51% (f(@)) =6k — felz)f5().

The quantity

p(z) = %(1 — %3:&3) (3.5)

determines the angle between the anisotropy axes in a deformed state. We see that to close the Poisson
bracket algebra of the hydrodynamic parameters for these liquid crystals, it is insufficient to introduce
only the anisotropy axes. It is necessary to extend the set of reduced-description parameters because the
right-hand sides of relations (3.3) contain the quantity p(z). The Poisson bracket of this quantity and the
momentum density has the form

{mi(2),p(a")} = 6(z — 2")Vip(z) + hu(z")V}é(z — 2'),
(3.6)
hik = 2p(1 — p)(mymy, — ngng).

According to (2.7), (3.3), and (3.6), the Poisson brackets for the set of reduced-description parameters
o(z), mp(z), plz), m(x), ©(z), and p(z) form a subalgebra of Poisson bracket algebra (2.7) of the dynamical
continuum variables. For biaxial liquid crystals, in addition to the quantity p(z), it is generally possible to
introduce two more conformational degrees of freedom representable in terms of the distortion tensor as

b(z) = 2[b(x)[p*/*(x). (3.7)

These quantities, together with (3.5), determine the dimensions and the molecular shape in liquid crystals
in a deformed state.

From definitions (3.7) with (3.2) and (2.7) taken into account, we obtain the Poisson brackets of the



conformational degrees of freedom and the momentum density

{7@(95)7 &(x/)} = §(x — 2" )WV,a(z) + fij(x/)vgé(x —a),
{mi(2),b(2")} = 0(z — 2")V;b(z) + gi; (') V}(x — 2),

where we use the notation

fie = alning — /p(1 = p) (nyme + npms)),
gik = b(mamy + /p(1 = p) (nymi + nems)).

The orientational m(z), 7(z) and conformational a(x), b(x), p(x) degrees of freedom are local functions
of the distortion tensor and are treated as independent variables. The set of reduced-description parameters
consists of the densities of additive integrals of motion, the two vectors ny(z) and my(x) characterizing the
anisotropy axes, and the three conformational parameters: ¢, (z) = {c.(2),i(z), M (), a(z), b(z), p(z) }.
In uniaxial nematics, the set of parameters decreases and becomes ¢, (z) = {c.(z),7(z),a(z)}. Poisson
brackets (2.7), (3.3), (3.6), and (3.8) form a closed algebra of hydrodynamic variables of a biaxial nematic
with disklike molecules; in this case, the density of the condensed medium energy is a function of these
variables,

e(x) = 5(0(95)7 w(z), p(x), n(z), Vi(x), m(z), Vi(z), a(z), B(x%p). (3.9)

We introduce the thermodynamic potential density

Then the second law of thermodynamics can be written as

ow ow

dw Ow dw _
w=cdYg+ 7 +p 4+<8ni vjavjnl) n+ap p+8a a+8b +
dw w dw dw
+ <8mi -V avjmi>dmi TV, (—avjm dni + o dmi>7 (3.10)

where YJl = T is the temperature, —Y;/Yy, = v is the velocity, and —Y;/Yy = p is the chemical
potential. Taking Poisson brackets (2.7), (3.3), (3.6), and (3.8) and formula (2.4) into account, we obtain
the hydrodynamic equations for the biaxial phase of a nematic with disklike molecules from equations of
motion (2.1) in Hamiltonian form:

olz) = -V; (0(95)1/14(95))7 plz) = —Vm(z), 7i(z) = =Vt (),
n;(x) = —vs(2)Van (x) — firg (@) Vav (),
mj(x) = —vs(2)Vem;(z) — girs () Vavs (x),
(3.11)
p(x) = —vs(2)Vep(a) — hi(z) Vi (x),
a(z) = —vi(@)Vialz) — fi;(2)V;vi(a),

b(z) = _Vi(x)vig(x) - gij(x)vjyi(x)~



The momentum flux density ¢;;(x) can be found by using the set of Poisson brackets (2.7), (3.3), (3.6),
and (3.8) and formula (2.4) and can be written in terms of the thermodynamic potential density:

0 wY)
=10 0 _ __~ Xk
tlk tzk +t1k7 tzk 85/; Yb ’
1 aw aw
ow dw dw ow = Ow
+9ikl<aml _vjavjml> + ap 5,k t - fua+ 7 gmb}

Formulas (3.10)—(3.12) give a complete set of ideal hydrodynamic equations for a biaxial nematic consisting
of disklike molecules with three conformational degrees of freedom.

We use the obtained equations of biaxial nematics to study the spectra of collective excitations. We
assume that the equilibrium of the medium is homogeneous and nondeformed (p = 1/2) and the medium

as a whole is at rest (14, = 0). This means that

a_wi ow w _ 0

8nk o 8mG o 8nk8ij o

ow  Odw w _ 0

amk N 8Vlmk N 8mkavlmj o
2 2

Ow Fw *w _o.

a—vk - Jv;0ny o Jvp OV n;

Linearizing system of equations (3.10)—(3.12), we obtain the equations for small deviations of the

parameters of a biaxial nematic from equilibrium:

1
(5p - _pvjvj7 08 = 07 (5p - E(n’bnl - miml)v’ﬂ}h

aP w 92w
00; = ——=Vip + —(nim —my —Vié Vion|,
pov ap P+2Y0(nnl m;my {8 lp+ pon 1on
1 (3.13)
ony = |:_nl(5>%j(ﬁ) + §(n/\ml + nlmh)} Véu,
. Lo 1
oy = _ml5,\j(m) + Q(n/\ml +nymy) | Vadu,
where s = o/n, n is the particle density, and P = —w/Yj is the pressure. Deriving system of equa-

tions (3.13), we take into account that according to (3.5), the minimum is realized at the point p = 1/2 in
the nondeformed state, i.e., (8w/8p)‘p:1/2 = 0. We assume that the term 9w/ (dpdn) is small compared
with 9%w/dp?. We also assume that solutions of Eqs. (3.13) contain the space—time dependence HO—kT)
As a result, we obtain the dispersion equation for the spectra of collective excitations

2,
det <925ij — ]fl]fja_lp - Dimjlkmkl> =0,
Dimjit = Afim [t + Bgimgs + Chim b, (3.14)
2 2 2
A= L Pe g 1w CELa_w
Yop da? Yop 0b? Yop Op?






where ¢ = 9P/dp is the velocity of sound in the isotropic state of the condensed medium under study
Ao = aPA/P, Ny = VPB/c?, and A\, = C/(4c?). We introduce the polar and azimuth angles 6 and ¢
determining the direction of the wave vector ¢ = ];/]f em = sin f cos g, € = sin@sin ¢, and el = cosf. We
see that two branches of acoustic oscillations corresponding to the first and second sounds can propagate
in a biaxial nematic with disklike molecules:

0% (k) = % <L4(/2) + 4/ L3(k) — 4L2(/§)> = k22 (&), (3.17)

where the solution with the plus sign determines a sound similar to that in a normal liquid and the solution
with the minus sign determines the second sound, i.e., a new branch of excitations due to the conformational
degrees of freedom of the biaxial liquid crystal.

The anisotropy of the velocities of sounds is essential for both solutions. It follows from (3.16) and (3.17)
that

s (8, 0) = %{1 + B, N sin? 0% [(1— B, A)sin? ) + 4Q(, A) sin® ] 1/2}1/27
Ol \) = B, \) — %()\a X+ A hy) sin? (% + 24,0) - (3.18)

— Ag A sin® (% - <p> — AcApsin? G + <p> — Xsin” 2¢.

Figure 1 demonstrates the character of anisotropy (3.18) (the three vectors m, 7, and [ form the
rectangular Cartesian coordinate system).

Comparing formulas (3.18) with the results in [4], we see that the reactive component in the spectrum
of the second sound can already be obtained in the adiabatic approximation if the conformational degrees
of freedom are taken into account in the hydrodynamic equations of a biaxial nematic.

4. Dynamics of biaxial nematics with rodlike molecules

In the case of rodlike molecules, the unit orthogonal anisotropy axes m(z) and 7(z) characterizing the
breaking of rotational invariance are determined by the relations

Alz)Bi(z) + B(x)Aq(x)

A(z)B;(z) — B(z)A;
ey A L@ o A@B) - B@)A) m
‘A(x)B(x) + B(z)A(z) ‘A(x)B(x) - B(x)A(x)‘
The vectors

Aj(z) = ey (z),  Bj(z) = earby; (2) (4.2)

are given here in terms of the inverse matrix bgjl(x). Because the inverse matrix has the form
(bil)/ :;E €0t o' baa Dbb detb:lg €0t Paa bob beor (43)

c’c 2det b abcta’bt/ c’Yaa’ Vbb 6abc a’b’'c’'Yaa’ Vbbb’ Yec’ .

according to this formula, definitions (4.1), and relations (2.7), we obtain the Poisson brackets of the vectors
m(x) and 77(z) and the momentum density

{mi(2), nj(2")} = 6(x — 2")Viny(x) + Fin; (2")V4d(z — 2),

{mi(x), my(a")} = 8(z — 2")Vimy(x) + Giry (") Vid(z — '),



where we use the notation

Fing() = —na(@)83; (7i(x)) + Pa)my (@) (ni(x)ma (@) + na(2)m; (@),

Ginj(z) = —mA(x)éfj( my(z) + nA(x)ml(x))
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The shape factor

and the conformational parameters

A(w) = 2|A@@)|(1 - P(2))'?,  Ble) =2|B@)|PV/*(x) (4.6)

are introduced to take the shape and dimensions of rodlike molecules into account. It follows from defini-
tions (4.5) and (4.6) and formulas (2.7) that

{mi(2), P(x/)} = d(x —2")VP(x) + 2H (2" )V}o(x — z'),
{mi(z), A(2)} = 6(z — ")V A(z) + Fy(2")V}é(z — ), (4.7)
{m(x%?(ﬁ)} = 6(x — ")V, B(z) + Gy («")V}6(x — 2'),

where we set

Fy = A(633(3) = /P(1 = P) (mymy. + nmy)),

G, = ((5},\C )+ P(1=P)(nymp + nkml)) (4.8)

Hiyp = —2P(1 — P)(mymi — nyng).

Expressions (2.4), (2.7), (4.4), and (4.7) permit finding the densities of flows of additive integrals of
motion in terms of the thermodynamic potential:

0 wY;
_ 0 / 0 _ k
Cak - Cak + Cak? ak — 85{1 —Yb s
Ow Ow dw dw
4 P —
ok = bv Ving IVym V img + B (3 my —Vi 8ij> (4.9)
dw dw ow  Ow ow oY
+ ’”(aml vﬂavjml>+ vap tax Tt oB ’“} Y. Yo

The set of reduced-description parameters consists of the densities of additive integrals of motion, the
two vectors 1 (z) and 7i(z), and the three conformational parameters: ¢, (z) = {sq(z) ), m(z), Alx),
B(z), P(x)}. This set forms a closed Poisson bracket algebra.

Next, proceeding as in the case of disklike molecules, we easily derive the local ideal hydrodynamic



equations for biaxial nematics with rodlike molecules with three conformational degrees of freedom:

olz) = -V; (0(95)1/14(95))7 plz) = —Vm(z), 7i(z) = =Vt (),
n;(x) = —vs(2)Ven,(a) — Fixg(2)Var(z),

mj(x) = —vs(x)Vem;(z) — Ging(2)Vavs(x),
(4.10)

Alw) = —wi(2)ViA(x) — Fy(2)Vv(z),

(z) = —ni(2)V;B(z) — Gij(z) Vv (),

-

P(x) = —v;(2)V;P(z) — Hij(2)V, v (z).

We linearize these equations and seek their solution in the form ~ HQ—kT) Linearizing the equations

leads to the bicubic dispersion equation

OF + 14(0, )" + (0, 9)9° + Lo (6, ) = 0, (4.11)

where the coefficients I4(8, ), 15(0, ), and 1y(0, p) have the forms

. 3 1 A
L, p) = — k2c2{1 + sin® @ {()\1 + X\2) <00t2 0+ Z) -7 ()\1 — )\2> sm<Z — 24p> + Ag} }
L(0,¢) = K2 (14(0, ) + k*c*) +

1
+ k*c*sin? 0{)\1)\2 2cot? 0 + 3 sin’ (% + 44,0)} +
+ A3 {cot2 0 + sin* (g + 24,0)} +

4 Aa)s {cot2 0 + sin* (g — 24,0)} — Az cos® 2p — (M + Ag) x

1 3
X {cot40+cot20— §Sin2 <ﬁ+4§0> +_} +

4 4
1 1

+ E(Al —A2) {cot2 0+ 5} sin(% - 24,0) }7
Io(0, ) = — E5cE A Mo g sin? 0 cos? 0.

Here, we introduce the dimensionless quantities

A 922 A EQ w 1 d*w

LT oYoc gA 2T Yo o5 57 UpYoc2 OP2

An analysis of Eq. (4.11) (cubic with respect to Q?) shows that in the range of the parameters \; where

the determinant of the equation is negative, the condensed medium under study is characterized by three
acoustic spectra. We introduce the notation y = Q2 + I,/3 and transform Eq. (4.11) to the reduced form

v+ qyt+t=0,






where ¢ = I, — I}/3 and t = 2I3/27 — I, /3 + Iy. The real solutions of the reduced equation are

e ¢ o B
Yy = 3(3]4—12>COS<3+(1€—1)3>7 k=1,2,3,

where

3/2
1/2 1 1/1
— = — LI+ = |=(=I? T .
2p<274 324+0>7 ! {3<34 Zﬂ

For the original equation (4.11), we obtain the respective solutions

cos ¢ = —

I
Qi:yk—§47 kE=1,23.

The three branches of the acoustic spectra 9%7 k=1,2,3, are shown in Fig. 2.

In this paper, we have shown that using the Hamiltonian formalism permits making the functional
hypothesis for biaxial liquid crystals more precise. Because of the closure requirement on the Poisson
bracket algebra, we must introduce additional reduced-description parameters, i.e., conformational degrees
of freedom. As a result, we predict that there exists a reactive component of the second sound in nematic
liquid crystals with disklike molecules and demonstrate that the second and third sounds can propagate in
biaxial nematics with rodlike molecules.
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