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Abstract—Expressions for the spectral—angular density of bremsstrahlung irom a relativistic electron in a
thin layer of matter are obtained. The effect that the multiple scattering of electrons by medium atoms exerts
on the spectral—angular features of radiation in a thin amorphous target is studied. It is shown that, if the
root-mean-square angle of multiple scattering is much larger than the characteristic angle of relativistic-
electron radiation, there occurs the bremsstrahlung-suppression effect, which is similar to the Landau—

Pomeranchuk—Migdal effect.

1. The multiple scattering of high-energy elec-
trons in a medium can have a considerable effect on
bremsstrahlung. The case where the radiation coher-
ence length is much greater than the target thick-
ness is of particular interest. In [1—3], it was shown
that the bremsstrahlung-suppression effect, which is
similar to the Landau—Pomeranchuk—Migdal effect,
can arise in this case. Experimentally, this effect was
studied at the SLLAC accelerator [4, 5], the spectral
properties of bremsstrahlung in the low-frequency
region being explored there.

Here, we consider the spectral—angular proper-
ties of bremsstrahlung from high-energy electrons in
a thin layer of matter. Particular attention is given
to the conditions under which the bremsstrahlung-
suppression effect is more pronounced in the angular
than in the spectral distribution. It is shown that,
if the root-mean-square angle of multiple scatter-
ing is much larger than the characteristic angle of
relativistic-electron radiation, 6 ~ =1 (0 is the an-
gle between the wave-propagation and the electron-
velocity vectors, and «y is the electron Lorentz factor),
the angular distribution of electron radiation within
the region around the angle § ~ y~! with respect to
the projectile-beam direction is virtually independent
of the target thickness, with its maximum being at an
angle of 6, ~ v~ 1.

2. Within classical electrodynamics (see [6, 7]),
the spectral—angular density of radiation from an
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electron moving along the trajectory r(t) is given by
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and k and w are, respectively, the wave vector and the
frequency of the emitted wave (we use the system of
units where the speed of light in a vacuum is taken to
be unity).

In a thin layer of matter, characteristic values of
the relativistic-electron-scattering angle ¥ are much
smaller than unity. Ii, concurrently, the radiation co-
herence length is much greater than the target thick-
ness T,
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then the quantity I can be represented in the form (see

[7])
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where v and v’ are the electron velocities before and
after scattering, respectively, and n = k/w. In this
case, the spectral—angular density of radiation from
an electron depends only on the particle-scattering
angle in matter. Substituting (4) into (1), we find that,
at small values of the scattering and radiation angles,

d’E B v (1 +a? + a?p?% + 203 cos 5)
dwdo w2 1+ a2+ 32 —2a8cosy




1 1
X p—
14+ a2)?2 (1+a?+ 52 —2aﬁcosg0)2}7

where oo = ~0, 0 and ¢ being, respectively, the polar
and the azimuthal angle of radiation, and g = 7.,
Y. being the electron-scattering angle. The angles 6
and ¥, are reckoned from the direction of the initial
electron velocity v, while ¢ is the angle between the
vectors k and v/, in the plane orthogonal to v.

Expression (5) must be averaged over the angles
of particle scattering within the target. Given the
angular distribution of scattered particles, f(¥.), we
can determine the averaged spectral—angular density
of radiation according to the formula
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which is valid for any type of target, prov1ded that its
thickness is much smaller than the bremsstrahlung
coherence length. The specific features of the scat-
terer would affect only the form of the distribution
function f(¥e).

For an amorphous target, the scattering-angle
distribution of particles is described by the Bethe—
Moliere function (see [8, 9]),
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where n is the medium-atom density and o () is the
differential cross section for electron scattering by a
single medium atom at a small angle .

The distribution function (7) is independent of ¢;
therefore, integration with respect to ¢ in expression
(6) can be performed in a general form. The result is
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For the case of a screened atomic potential, Bethe
derived a somewhat simplified expression for the dis-
tribution function (see [9]); that is,
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where 92 = X2B is the mean-square value of the
multiple-scattering angle, x2 = 4mnT Z%e*/(pv)?,
and B is obtained from the relation
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Here, Zle| is the medium-atom charge; p is parti-
cle momentum; x1 = 1/pR, R being the radius of
atomic-potential screening; and €' = 0.577... is the
Euler constant.

Expression (8), involving the distribution function
(10), describes the spectral—angular distribution of
bremsstrahlung from relativistic electrons in a thin
amorphous-medium layer.

3. We will now focus on some special features of
the spectral—angular distributions of radiation from
a relativistic electron in a thin amorphous-medium
layer. First, we consider the angular distribution of
radiation from an electron in the (v, v') plane. Rewrit-
ing (5) in terms of the Cartesian coordinates (z, y, 2),
with the z axis being directed along v and the y axis
being orthogonal to the (v, v') plane, we find that the
distribution of radiation in the (v, v') plane is
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where a,, = v cos .

Let us examine the asymptotic behavior of this
expression at small and large scattering angles.

For small scattering angle (5 < 1), we have
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This expression shows that, for 3 < 1, the an-
gular distribution of radiation peaks at a, =0 and
that the spectral—angular density of radiation from
an electron vanishes at a, = £1. In the case being
considered, the bulk of the radiation spectral density
is concentrated within the angular region 6, < ~~1,
where 6, = 6 cos .

For large values of the scattering angle (3 > 1),
the angular distribution (13) of radiation has maxima
at a, ~ land o, & #— 1 and vanishes at o, & —1/43
and a, ~ 5+ 1/3. Expression (13) also shows that
the angular density of radiation decreases fast in the
angular intervals corresponding to the regions a, <
—1 and a, > G+ 1. In the region 1 < o, < 3, the
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Fig. 1. Angular distribution of radiation from an electron
inthe zy plane, which is orthogonal to the direction of ini-
tial electron velocity at 3 = 10. The figures on the curves
correspond to the values of the angular-distribution den-

sity (5) in units of 1072242 /72,

angular density of radiation takes commensurate val-
ues over a rather broad interval of scattering angles.
By way of example, we indicate that, for g = 10,
the angular density of radiation has a minimum at
o, = [3/2, where the radiation intensity is about half
its value at the maxima. This means that, at 5 > 1,
the bulk of the spectral density of radiation from an
electron is concentrated within the angular range 0 <
¥y < Ue.

For g > 1, it follows from (5) that, in directions
close to that of the initial particle-motion velocity v,
the angular density of radiation can be represented as
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In this case, the angular density of radiation is inde-
pendent of the scattering angle.

(a<p). (19)

These results are illustrated in Fig. 1, which dis-
plays, for 8 = 10, isolines of the angular density of
radiation from an electron in the xy plane.

We now consider the multiple-scattering effect on
the angular distribution of bremsstrahlung. For small
scattering-angle values such that the condition 32 =
292 < 1 is satisfied, the function ®(6,9.) in (8) can
be expanded in 3. In the first order of this expansion,
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Fig. 2. Spectral—angular density of electron radiation
as a function of the polar angle 6 with respect to the
direction of initial electron velocity. Figures on the curves

correspond to the values of the parameter 1/ 32.

the spectral—angular density of radiation is given by
the expression
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which coincides with the corresponding result for
the spectral—angular density of radiation in Bethe—
Heitler theory, according to which the radiation inten-
sity grows linearly with increasing target thickness
{see, for example, expression (5.9)in [10]}.

The inequality 32 <« 1 is a condition under which
the dipole approximation is valid in describing radi-
ation from a particle in a medium [7]. As the tar-

get thickness is increased, the condition 32 < 1 is

violated (since 32 ~ T'); therefore, effects associated
with a nondipole character of radiation must be taken

into account. For arbitrary values of 52, averaging in
(8) can be performed only on the basis of numerical
methods.

The spectral—angular density of radiation as a
function of its polar angle # is given in Fig. 2 for

various values of the parameter 1/ 32. The displayed

curves show that, for 32 < 1, the angular distribution
of radiation has a maximum in the direction of the
initial particle velocity and decreases fast with in-
creasing # [see Eq. (16)]. At 32 ~ 1, the maximum in
the angular distribution of radiation is shiited into the
region of angles around 6 ~ v~!. Concurrently, the
growth of radiation intensity with increasing target
thickness becomes slower than a linear one, which is
typical of Bethe—Heitler theory. For 32 > 1, the max-
imum in the angular distribution of radiation occurs in

(16)



the angular region around 6 ~ «~!, with the radiation
intensity at this maximum being virtually independent

of 32 (that is, of the target thickness). However, the
angular distribution broadens with increasing target

thickness. For 32 > 1, the radiation intensity in the
angular region 6 < y~1 decreases fast with increas-

ing 32. For 32 > 1, the distribution of radiation in the

angular region 0 < 1/ 32 is given by (15). Within this
region of radiation angles, the angular distribution is
of a universal form; that is, it is independent of the
form of scattering-angle distribution of particles.

Thus, we see that, for 32 > 1, bremsstrahlung is

suppressed in the angular region 0 < /92 in relation

to the corresponding result in Bethe—Heitler theory.
This bremsstrahlung-suppression effect is similar to
the effect of suppression of the spectral density of
bremsstrahlung in a thin layer of matter (see [2, 3]).
For the spectral density of radiation as a function of
the target thickness, however, there occurs a transi-
tion from a linear to a logarithmic target-thickness
dependence of the radiation intensity, while, for the
spectral—angular distribution of radiation, a linear
growth of the radiation intensity with the target thick-

ness at small /32 gives way to a constant value at large

(2. This means that the bremsstrahlung-suppression
effect is more pronounced in the spectral—angular
distribution of radiation than in its spectral density.
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