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Abstract

A theoretical model was developed describing the thermophoretic deposi-
tion of aerosol particles in fully-developed laminar flow through channels
with their walls at different fixed temperatures. Precipitation of particles
occurs under the considerable transversal temperature drops. Gas flow
takes place when the gas density, the dynamic viscosity and the thermal
conductivity depend on the temperature of the gas. The nonlinear system of
equations of gas dynamics describing the distribution of the temperature
and the longitudinal component of the mass velocity was solved analyti-
cally. The expressions for the distributions of the temperature and the lon-
gitudinal component of the velocity in the gas flow enabled us to obtain
formulae for direct estimation of the channel length at which the complete
thermophoretic precipitation of particles occurs. Numerical evaluation has
shown that the increase of the upper plate temperature causes a decrease in
the length of complete thermophoretic entrapment of particles.

1. Introduction

Aerosol particles suspended in a non-isothermal gas acquire
a mean velocity relative to the gas and move in the direction
opposite to the temperature gradient. This effect, known as
thermophoresis, occurs whenever the size of the particles is
comparable to the mean-free-path of the background gas
and is caused by the differential momentum transfer to the
particles following collisions with molecules that originate
in regions of the gas that differ in temperature. For particles
with nearly spherical shape, the thermophoretic velocity is
given by

Uy = —frvWT/T, 1)

where v is the coefficient of kinematic viscosity and T is the
gas temperature. The scalar coefficient value f; < 1 depends
on the particle and gas thermal conductivities and the
Knudsen number (based on particle radius and gas mean
free path). An empirical expression for f; approximately
valid for all Knudsen numbers has been given by Talbot et
al. [1]. Theoretical expression for f; for the large and mod-
erately large solid spherical particles (Kn < 0, 3) are found
in the works of Annis and Mason [2], Redchic and Gaydu-
kov [3], Poddoskkin et al. [4]. For example, f; of the
moderately-large solid spherical particles can be evaluated
by (Poddoskin et al. [4]).
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where Kn = A/R, x, and ; are the coefficients of thermal
conductivity of the gas and the particle substance, and
C* = C,/K{Y. Expressions for the gas-kinetic coefficients
KQ, Cr, Br, Brs Bss Cm, C,, C,, provided by the Bolt-
zmann equation in the Knudsen layer, are also given by
Poddoskin et al. If the coefficients of accommodation for the
tangential impulse and energy are equal to unity, gas-kinetic
coefficients are as follows: K{¥ = 1.161, C, = 2.179, B =
3.731, fr= —0.701, Bz =13.651, C,= 1131, C,=00971,
C, = 0.548. The coefficient f; of the small solid particles can
be evaluated by Shchukin and Yalamov [5, 6])

_ 301+ (n/32)q1 - ge)]

4 [1+ (n/64)q(9 — q5)] ’
where g, and g are the coefficients of the accommodation of
the tangential impulse and energy.

The thermophoretic force can have a considerable effect
on the particle motion in the gas flows with non-uniform
temperature distribution. Thus, for instance, this force
causes accelerated deposition of aerosol particles on the
cooler heat-exchange surfaces (Simon [7], Wisubenco et al.
[8], Jia et al. [9]), formation and motion of soot in flames
(Eisner and Rosner [10]), deposition soot on cooled gas
turbine blades (Vermes G. [11]). The mechanism of ther-
mophoretic transfer of particles can be used in the design of
devices for the purification of small gas volumes (Fulford et
al. {12], Moo-Young, Yamaguchi [13], Ostrovsky et al
[14], Shchukin et al. [15, 16]. In such devices the thermop-
horetic deposition of the particles can occur in the plane-
parallel, coaxial and disk channels with different surface
temperatures.

Experimental and theoretical studies have been performed
concerning different aspects of thermophoretic depositions
of particles between parallel plates (Fig. 1) with tem-
peratures T, and T, (Fulfard et al. [12], Moo-Young [13],
Shchukin et al. [15,16]). For example, in theoretical studies
(Moo-Young et al. [13], Shchukin et al. [16]) a detailed
analysis was made of the thermophoretic deposition of par-

fr 3)

T T>T
kS 4 2
0 \ REATING PLATE 2
- ey = -
~ u,],‘ ‘u'?*ug uﬂ= v||
Q X -
——i u, L
ZONE OF FULLI- -
-DEVELOPED FLOW 1] N
? \ Tz ! COCOLING PLATE
e [3

X

Fig. 1. Plane-parallel channel with different wall temperatures.



ticles in a steady uni-component laminar gas flow with small
transverse temperature drops, when thermal conductivity
coefficients, dynamic viscosity and concentration of gas mol-
ecules are constant values.

In this paper, a theoretical study was made for thermo-
phoretic deposition of aerosol particles from fully-developed
laminar gas flow through channels with their walls having
different fixed temperatures. Precipitation of particles occurs
under arbitrary transversal temperature drops when the gas
density, the dynamic viscosity and the thermal conductivity
depend on the temperature of the gas. A numerical analysis
of the dependence of the channel length at which complete
thermophoretic precipitation of particles occurs at the tem-
perature T; was carried out.

2. Formulation

We shall consider the thermophoretic deposition of particles
in the horizontal plane-parallel channel (Fig. 1). The width
and length of the plates in the channel are much greater
than the distance H between the plates. The distance H is
much larger than the molecular mean free path. The upper
plate temperature T; may be much higher than the lower
plate temperature T,. We assume the aerosol to be suffi-
ciently rarefied, so that the mutual effect of particles on their
motion and on the distribution of the temperature and the
gas velocity in the channel can be disregarded. The Brown-
ian motion of the particles is considered to be insignificant,
so that the vertical component U, and the horizontal com-
ponent U, of the particle velocity take deterministic values.
The particles are deposited on the lower plate due to the
thermophoretic and gravitational forces.

Deposition occurs in the zone of the fully-developed
laminar flow. In the zone of fully-developed flow the expres-
sions for the gas temperature T and the horizontal com-
ponent V, of the gas velocity depend only on the transversal
coordinate x and the vertical component ¥, = 0. The zone
of the fully-developed flow is in the region with

z>1,, I, =0065TH(HY, /&), )

where @ is the average of the thermal diffusivity. The
entrance length /. is much smaller than the length /., on
which all particles are deposited. The concentration of the
gaseous molecules n and the coefficients of thermal conduc-
tivity ¥ and dynamic viscosity u all depend on the gas tem-
perature T.

In the laminar flow under consideration, the aerosol par-
ticles move to the lower plate along certain trajectories.
Integration of the transport equation gives the coordinates
of these trajectories

dx/U, = dz/U,, )

where U, and U, are the vertical and horizontal com-
ponents of the particle velocity

Ux = UTx + ng’ Uz = Vz (6)

In (6) Uy,, U,, are the thermophoretic and gravitational
projections of the particle velocity. When the surface of the
particle is near-spherical, the equation for Uy, is

1oT

Ure = —frv = —.
= YT 5 )

3. Distribution of the gas-dynamic quantities in a
fully-developed flow with arbitrary transversal temperature
drops

In evaluation of the thermophoretic collection of the par-
ticles, it is necessary to know the distributions of the tem-
perature T and the gas velocity components V,, V,. In the
zone of fully-developed flow the component ¥, = 0, and the
expressions for T and V, depend upon the transversal coor-
dinate x. The stationary gas transport equations
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where P is the pressure of the gas. The thermal conductivity
k and the gas viscosity u depend only upon the temperature
T. The boundary conditions are

Tieo=T, Tli=g=T1, (16)
Pl,—0 =Py, (17)
Vz‘x=0 = 0: Vz!x=H = 0 (18)
First, integrating eq. (13) yields
dT
—=A
L (19)

where A is an integration constant. By integrating of eq. (19)
together with the boundary condition (16), we obtain the
following dependence of T on x:

T T2
j KdT=t-[ x dT,
T1 T1

where t = x/H.
From equation (14) it follows that the gas pressure p
depends only upon the longitudinal coordinate z:

(20)

p = p(2). (21)



After substituting eq. (21) into eq. (15), the following equa-
tion is obtained:

dp_d( d,
dz _dx \#ax/
The left part of this equation depends only on z and the
right part depends on x. From that it follows:

(22)

d

Ep = —a, (23)
d { av,

I (# _d—x_> = —a, (24)

where a is a positive constant. By integration of eq. (23)
together with the condition (17), we obtain the following
expression for the gas pressure

P =Py — az. (25)
Integrating eq. (24) together with the condition (18) yields
V, = VOG(x) (26)

where u'™ = u|,_, is the dynamic viscosity at the upper
plate surface;
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The equation for V® can be obtained by the following con-
dition of flow continuity of the molecules in the cross-
sections of the channel:

H
Q=b f nV, dx, (28)

0
where b is the width of the plates and » is the concentration
of the molecules. Substituting the formula for V, given by eq.
(26) in (28) gives

Y
Vo
bHn'YS’

20u
4= vy’

S = J 1G(n/n“)) dt, (29)
0

where n) = n|,_,. In the channels with laminar flow the
longitudinal drops of the gas pressure are small:

Po—P<Po.
Therefore, the value of n can be obtained by means of

n=po/kT, orn=nY/8, (30)

where n'") = p,/kT, is the concentration of molecules at the
upper plate, k is the Boltzman constant, 8 = T/T; is non-
dimensional temperature. When the values of the function G
{27) are determined eq. (20) is used.

From egs (20), (26), (27), when the transversal temperature
drops are very small and the coefficients x and y are con-
stant, it follows:

6
T=T,+(T,—-T\)t, V,=VO(1 —1), VO= ngu)-

The expressions for T (20) and V, (26) were obtained first in
our paper. We can express x and x as

p=uu*, (31)

where k¥ = k|7_,, ' = pir-7,; k* and u* are the non-
dimensional functions depending on 8 = T/T,. Substituting
the formulas for n, k and u given by eqs (30), (31) in (20), (27)
and (29) gives the following nondimensional equations for
the nondimensional temperature @, the function G and
coefficient S:

K= K(I)K*,

/] a2
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S = J- (G/9) dt (34)
0

where 8 = T/T,, 8, = T,/T, and ¢t = x/H. The maximum
value of V, is in the points with the nondimensional trans-
verse coordinate t = t,, in which the derivative

dG
= =0, 35
). =" (35)
Solving the equation (35) yields
1 1
b = J‘ (t/u*) dt/f (1/u*) de. (36)
0 0
From eq. (32) it follows:
8 7] 62
t=jrc* de/j x* d6, dt=(x*/J k* de) deé. (37)
1 1 1

After substituting eqs (37) into egs (33), (34) and (36), we
obtain the following equations for the function G and the
coefficient S and the coordinate ¢,,:
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In eqs (38)-(40), the nondimensional temperature 6 is the
new independent variable of integration. When

(38)

(39)

K*=0°, u*=06° 41)
the eqs (38)—(40) are:
6 =[1+6;"%— 1)]/a+a, 42)
_ 2(1 + )
(2+42a—p)1—65%9?
x {(1 L A T ——((11—_221:;) (1-0! *“*”)}, (43)



2(1 + a)?

S= T za-pi_o 9 ?” 49
. {(1 e B ((11__65;:-?? (=0

s e T A

2 gyres (l(%éi——),;) (1 o3 } @)
(= {(1 oy - L

x (1 - e%”"ﬂ)} / (1ol hl— 03, (46)

The formulae obtained enable us to directly estimate the T,
¥, and p distributions when the values of T, T, and p, are
given. As seen from eq. (46), the upper plate temperature
increase causes a shift of the points with the maximum value
of ¥, to the surface of the cooler lower plate. When the
equations for coefficient ¥* and u* are equal to (41) the
value of nondimensional coordinate ¢, does not exceed

=1+ )2 + 2« — f).

The analysis showed that, when T,, n*, p,, Q, H are con-
stant and the temperature 7, rises, the value of ¥, at each
point of the gas flow and the longitudinal drops p monot-
onously increase. This is clearly evident from Fig. 2 and Fig.
3. The curves in Fig. 2 show the dependence of the function
B(t) on the nondimensional coordinate ¢t when T,/T, =1
(curve 1), T,/T, = 3 (curve 2), T,/T, = 6 (curve 3). The curve
2 and curve 3 first are given. The function B(z) is equal to:

B(t) = V,(n®bH/Q) = (n'*'G/nS), (48)

where n? = n|,_; = po/kT,; n*bH/Q = constant. The func-
tion B(t) depends on the nondimensional coordinate ¢ and
the ratio T;/T,. The function B(t) reaches a maximal value
when ¢, = 0.5 (curve 1), t, = 0.5595 (curve 2) and ¢, =
0.5870 (curve 3). The curve in Fig. 3 shows the dependence
of the ratio y upon T,/T,

47)

v = (po — P)/[(Po — P) |T1/T2=1] = af(a ‘T1/Tz=1)- (49)

The ratio y depends only upon T;/T,. The curves in Fig. 2
and Fig. 3 have been drawn on the assumption that
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Fig. 2. The dependence of the function B(t) on ¢.
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Fig. 3. Relationship between y and T,/T,.

o = B = 0.7. Comparing the curves on Fig. 2 and Fig. 3 it
follows that, with the increase of T;/T,, the pressure drops
will grow faster than the value of the component V. This is
due to the simultaneous increase of the value of the coeffi-
cient y and the component V, when the temperature T, rises.

4. Peculiarities of thermophoretic deposition

In our case aerosol particles move to the lower plate along
well-defined trajectories. The trajectories of the particles are
described by the following differential equation:

dx/U, =dz/U,, (50)

where U, = U, + U,, and U, = V, are the transversal and
longitudinal components of the partical velocity. The values
of the component V, can be determined from the eq. (26).
From eq. (20) it follows that the derivative

7 N dT 51
i ”

dx «H Jr, ’ (51)
or

dar 1 rz
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dx «*H '}, (52)

After substituting eqs (51), (52) into eq. (7), the following
equations for the component Uy, , when shape of the parti-
cle is near spherical, are obtained:

1 T1
dT
kHT ‘[Tz * ’

1
Upy = fy v 2 f % df,
k*H 92

Urs =frv (53)

(54)

where vV = uM/mn'V = v|,_, is the coefficient of kinematic
viscosity in the points with ¢t = 0. The components U, and
U, depend only upon x. Considering this fact, we can inte-
grate eq. (50) and get the following expression for the trajec-
tory coordinates of the particle motion:

2= f (U.JU,) dx, (55)

(0)



where x'® = x|,_,, X, z are the coordinates of the trajec-
tory. The length I, for complete particle deposition for the
given values of T}, T, , py and Q can be obtained from:

= J H(U,/Ux) dx (56)

0
Consider now the peculiarities of the pure thermophoretic
(when Uy, > U,,) deposition of spherical particles. It will be
easier to evaluate [, if we proceed in the integral of eq. (56)
from the independent variable x to a new independent vari-
able 0, taking eqs (37) into account. Thus, eq. (56) may be
written as

I = 19, (57)
where v =v =15 n®=n li= 15 ﬂ*(z) = u* |6=61 ’ (n(z)v(z)/
n(l)v(l)) = (H*(Z)/ﬂ*(l)),
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2
In obtaining eq. (57), we considered egs (26), (37) and (54).
The value of the coefficients S and G can be estimated by
eqs (38), (39), (43) and (44). With the constant value of f; (as,
for instance, for small particles) and the degree dependence,
of x* and u* upon 0, the expression for V¥ is written as

(1+a

YT
Sl =037

04

. 0§+2a—ﬁ)

—grsy (= A7)

1 (1
“12+32-28 (1

1 +4a— _ 1
_(3+4a—2ﬁ)(_63 ) (1 +2¢— p)
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If deposition occurs at small temperature drops, when
(1 —6,) <1, we obtain the following equation for the
trajectory coordinates and the length of complete particle
deposition:

01+a B (1 )

W (1- (60)

Z = lgo) 7(1—6—) [3(t2 — t(0)2) — 2(t3 - tgo)s)],
T — V2

[ = O __1_ 1©) — Q_H

¢ fr(1 — 8, bnv’

where n, v and f; are the mean values of n, v and f; in the
cross-sections; t© = x“/H. When T, rises, both the ther-
mophoretic velocity of the aerosol particles and the longitu-
dinal component of the gas velocity increase. Hence it is
interesting to define the dependence of the length I, upon T,.
When the value of @, T,, p,, b and H are constant, the
dependence of I, upon Q, is defined by the function W¥. The
function ¥ depends only upon the ratio 7;/T,. Numerical
evaluation by means of eqs (59) and (60) show that, when T,
increases, I, decreases monotonously. This is illustrated by
the curves in Fig. 4, demonstrating the dependence of the
function ¥ upon the ratio 7;/7, when the degree of depen-
dence of k* and u* upon @ are given by eqs (41) with
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Fig. 4. Relationship between the function ¥ and 7,/7, when: A¥/R = 0.05
(curve 1) and A?/R = 5 (curve 2).

o = f =0.7. The curves in Fig. 4 show the results of calcu-
lations for iron particles with A‘®/R = 0.05 (curve 1), i?/
R = 5 (curve 2) suspended in an air stream with p, = 1 atm,
T, = 293K. Here, R is the radius of the particle and A® is
the gas mean free path when p, = latm, 7, = 293K. The
values of the coefficient f; were estimated by eqgs (3) and (4)
withg, = land gz = 1.

In the process of thermophoretic deposition the heat
transfers from the upper to the lower plate. Equation (61)
can be used in estimating the heat flux Qr:

T
Qr = —blx o (61)
dx’
After substituting eq. (52) into eq. (61), we obtain:
1 1
Qr = T,x"Mbl, — J k* dé. (62)

With account of eq. (56), the expression for Q@ develops into

T )
0, =QPF, F= ‘P( 1"(2))J K* do,
62

where 0 = (xPT, Q/nPv®), k@ = k[;_r,. The function F
depends only upon the ratio 7,/T,. From the equation for
Q1 (63) it follows that the heat flux Q; does not depend on
the distance H between the plates and the width b of the
plates. The numerical evaluation has shown that, when T
increases (with the fixed value of Q, T,, po), O also
increases monotonically. This is well demonstrated in Fig. 5,
showing the curves of the dependence of the function F
upon the ratio T)/T, for iron particles with A,/R = 0.05
(curve 1) and A®/R = 5 (curve 2). The evaluation has been
done under the assumption that the particles are in an air
stream with p, = latm and T, = 293 K.

Experimental studies of the thermophoretic deposition of
aerosol particles in plane-parallel channels with consider-
able transversal temperature drops were not yet done.
Fulford et al. [10] experimentally examined the effect of the

(63)
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Fig. 5. Relationship between the function F and T,/T, when: A%/R = 0.05
(curve 1) and A?/R = 5 (curve 2).

thermophoretic force on deposition of particles in the plane-
parallel channel with small transversal temperature drops.
They showed that appreciable effects can be obtained even
with small temperature drops for particles up to about
30 um in diameter (which are small for conventional dust
removal techniques) in a horizontal laminar air stream. The
equipment used in this experimental study consisted of a
long horizontal rectangular channel (of cross-section 10.1 cm
by 0.63 cm) constructed of two brass plates at the top and
bottom with transparent “Lucite” acrylic sheets forming the
sides. A sheet metal chamber of size 30 x 25 x 8cm was
attached at the inlet end of the channel to serve as a calming
section for the inlet air. A channel entrance length of 91 cm
was provided in front of the working section to ensure a
fully developed velocity profile before entry to the working
section (61 cm long). The brass plates were held at different
temperatures by circulating water through external baffled
jackets attached to them. Temperatures were measured by
means of thermocouples embedded in the plate surfaces and
a suitable potentiometer. The plates were carefully earthed

to prevent accumulation of electric charges. Particles were
dispensed isokinetically into the main air stream in a thin
stream down the centre of the channel through a small
nozzle immediately upstream of the working section. The
collector described after modification may be used for the
experimental study of the thermophoretic deposition of par-
ticles in channels with considerable transversal temperature
drop.

5. Conclusions

Formulae have been obtained which allow evaluation of
thermophoretic deposition of aerosol particles in plane-
parallel channels with considerable transversal temperature
drops. These formulae show that an increase of the upper
plate temperature causes a decrease of the complete ther-
mophoretic capture of particles. The resultant data may
ultimately be used in practical applications; for example, in
devices for the purification of gas streams from aerosol par-
ticles of micron and sub-micron size. These particles present
difficulties for conventional dry air cleaning devices such as
fibrous filters, cyclones, and electrostatic precipitator [17].
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