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The results of investigation of uniaxial and biaxial nematic liquid crystals dynamics with molecules of the various

forms are presented. These condensed matters possess internal spatial anisotropy and for their adequate description

introduction of additional dynamic quantities is necessary. They are vectors of spatial anisotropy and conformational

degrees of freedom. Investigation of dynamics of the given condensed matters is based on Hamiltonian formalism

in which framework the nonlinear dynamic equations for uniaxial and biaxial nematic liquid crystals are derived.

Spectra of collective excitations are obtained and their polarization features are investigated.

1. INTRODUCTION

Nematic liquid crystals are orientationally or-
dered anisotropic liquids with spontaneously broken
symmetry to rotations in configuration space. Be-
sides, they possess the internal molecular structure
capable to be deformed in the process of evolution,
which also must be considered at the macroscopic
level. Hence, for the description of dynamics of
such condensed matters introduction of the addi-
tional variables connected both with broken symme-
try and with the form and the size of molecules is
necessary.

In the given work features of dynamics of uni-
axial and biaxial nematic liquid crystals taking into
account internal structure are considered, and possi-
bility of distribution of collective excitations and their
polarization structure is studied.

2. FEATURES OF DYNAMICS AND
POLARIZATION STRUCTURE OF
ACOUSTIC SPECTRA OF UNIAXIAL
NEMATIC LIQUID CRYSTALS

2.1. Nematics with rod-like molecules

For uniaxial nematics along with usual dynamic vari-
ables - densities of mass p, momentum =; and en-
tropy o, the additional parameter - unit vector of
spatial anisotropy (director) n (x) is introduced [1].
Using Hamiltonian approach of [2, 3] we obtain dy-
namic equations of uniaxial nematic with rod-like
molecules [4]:

T = —Vit,

p:—vi’f(’i? o= -V (ka)7
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is energy density, [ is length of a molecule.
Linearization of (1) near equilibrium state leads

to the system of linear and homogeneous equations

(3)

which have a nontrivial solution for the vanishing of
the determinant

Here P = —¢ + gTHga +

Dij (k7 w) (Si}j (k7 w) = 07

det D;j = w® + w*ly +w?l =0, (4)

where w is frequency, k is wave vector and

I (k) = —k2¢2 — A (kn)? < 0,
I (k) = ¢*\ (k2 . (kn)z) (kn)? > 0.
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usual liquid. From (4) it is clear, that in unixial
nematic with rod-like molecules the propagation of
two acoustic oscillation modes w? (k) = ¢% (k) k? is
possible corresponding to the first and second sound.
The solution with a sigh (4) corresponds to the first
sound analogous to that in usual liquid. The so-
lution with a sigh (-) is new branch of excitations
caused by conformational degree of freedom - rod-like
molecule length. In spherical system of coordinates

> 0 and ¢ is sound velocity in



kn = kcos @, where ¢ is polar angle, hence, velocities
cx look like [2]:

ce (0) = [1+ Acos? 0 (6)
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Calculated angular values of extremum points (8 =
7 /4) for sound velocity ¢_ coincide with experimental
data [5, 6].

Let’s consider solutions of (3) corresponding to
modes w = kcy. Expression for (5v§i) (k) we are
looking for in the form of decomposition on three or-
thogonal vectors:

505 (k) = kyou [ (k) + [k x ;0017 (k) +

[llexn]xk], o (+
Jrﬁ&}éﬁ (k) .

From (3) we find, that &Jﬁ) (k) = 0. Then

[k xn] xk|,

+ +
50§ (k) = kyo0 (k) + - 505 (k) |

I
Hence, solutions corresponding to the first and sec-
ond sounds are superposition of longitudinal and
transversal components and the relation of these am-
plitudes has the form:
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Using (6) we rewrite (7) in terms of polar angle:
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At A << 1 the relation of amplitudes for the first
sound f (@) becomes simpler:

Acos® 0
I+ () 4sin® @’
We can conclude, that at 6 — 0 function f. () — oo,
hence, at such values of polar angle sound is transver-
sal. At # — 7/2 function f; (8) — 0, hence, at such
values of polar angle sound is longitudinal. For the
second sound the relation of amplitudes f_ (6) looks
like
1 — Asin? 6 cos 20

AcosOsin® 0

f-(0) (8)
We can conclude, that at § — 0 and § — 7/2 func-
tion f_ () — oo, hence, at such values of polar angle
sound is transversal.

2.2. Nematics with disc-like molecules

The direction of orientation of such liquid crystals is
defined by unit vector of a normal to molecule plane.
Studying of dynamic behavior of uniaxial nematic
with disc-like molecules we will carry out similar to
earlier considered case of uniaxial nematic with rod-
like molecules. Dynamic equations of uniaxial ne-
matic with disc-like molecules are as follows [4]:

p=-Vim;, 7 =-Vity, o&=-=V(ov),
d = —v,Vyd — djs (n) Vo, (9)
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Here d is molecule diameter. Dispersion equation has

the form (4), where coefficients I,, a = 2.4 are as fol-
lows:

LK) = K22 — 2\ (K2 — (kn)z) <0,

I (k) = ¢*\ (k2 . (kn)z) (kn)? > 0, 1)

22 > 0. From here we come to

acoustic spectra w? (k) = ¢% (k) k2. In this case also
two anisotropic velocities of acoustic waves exist [2]:
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Polarization structure of the received spectra of
collective excitations looks like
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and relation of amplitudes has the form
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Using (11) we rewrite (12) in terms of polar angle:
1
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At A << 1 the relation of amplitudes for the first
sound g4 (0) becomes simpler:
Asin® 0

g+(0) == 4dcosf
We can conclude, that at § — 0 function g4 (6) — 0,
hence, in this case sound is longitudinal. At 8 — 7/2
function g+ (#) — oo, hence, in this case sound is
transversal. At A << 1 expression for ¢_ does not
depend on molecule form, so the relation (8) is iden-
tical for uniaxial nematics with rod-like and disc-like
molecules.




3. FEATURES OF DYNAMICS AND

POLARIZATION STRUCTURE OF

ACOUSTIC SPECTRA OF BIAXIAL
NEMATIC LIQUID CRYSTAL

3.1. Nematics with ellipsoidal molecules

In the case of biaxial nematic with ellipsoidal mole-
cules the set of thermodynamic variables contains
additionally two unit and orthogonal vectors of spa-
tial anisotropy n (x),m (x) and three conformational
parameters u (x) ,v (x),p (x) describing sizes of long
and short molecule axes and an angle between them.
Acting further similarly to previously considered case
of uniaxial nematics, we obtain dynamic equations of
biaxial nematic with ellipsoidal molecules [4]:

p=-Vim, 7i=-Vity, &=-=V(ov),
75 (X) = —vs (x) Vsny (x) — Fiag (x) Vav; (%),

g (x) = —vs (%) Vemy (x) = Girg (%) Vaws (x),
@ (x) = —v; (x) Viu (x) = Fyj (x) Vjv; (x),
0 (x) = —u; (%) Vo (x) = Gij (x) Vi (x)
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where P = —¢ + gCHC + 8vm Vin; + 8Vlm Vim; is
pressure, FWGWH and Fijr, Giji, Hijp are some
functions of n (x),m (x) and v (x),v (x),p(x). Lin-
earization of (13) near equilibrium state leads to the
system of linear and homogeneous equations

(13)

O
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(Si}j (k7 w) Dij (k7 w) =0 (14)
Condition for the existence of a nontrivial solution
of (14) is the vanishing of the determinant detD =
w8 + Wty 4+ %Iy + Iy = 0, where coefficients I,, a =
0,2,4 are some functions of kK, F,G,H and F, G, H
are some functions of n (x),m (x),k and parameters
Ao, = 1,2,3:
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As a result we come to bicubic dispersion equation

WO I (K, 0, 0)wt + I (K, 0, 0)w? + 1 (k, 0, p) = 0.
(15)
From (15) it is clear, that in biaxial nematic
with ellipsoidal molecules in general case propaga-
tion of three acoustic oscillation modes w? 23(k) =
0%7273 (k) k? is possible corresponding to the ﬁrst sec-
ond and third sounds. Detailed analysis of the ob-
tained spectra is given in [4].
Let’s consider solutions of (14
to modes wi,s = cf 53(0,¢) k.

) corresponding
Expression for

(51}51’2’3) (k) we are looking for in the form of decom-
position on three orthogonal vectors:
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From (14) we find that these solutions are su-
perposition of one longitudinal and two transver-
sal components. It can be shown, that at
f# — 0 sounds are cross-polarized with components
dv (1’2’3) k), dv (1’ 3 (k); at & — w/2 sounds are

cross-polarized Wlth component (51;(1’ ) (k).

3.2. Nematics with discoidal molecules

Dynamic equations of biaxial nematic with discoidal
molecules are as follows [4]:

p=—-Vym;, 7 =—-Vily, o=-Vy(ov),

nj (X) = —vs (X) Vsny (x) = fing (%) Vv (%),

1 (x) = —vs (x) Vamy (X) — ging (%) Vaws (%),
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Here n (x),m (x) are unit and orthogonal vectors of
spatial anisotropy, ¢(x),t(x),p(x) are conforma-
tional parameters describing sizes of long and short
molecule axes and an angle between them, f;;, gi5, hij;
and fi;x, 9ijk, hije are some functions of n (x),m (x)
and ¢(x),t(x),p(x). Linearization of (16) near
equilibrium state leads to the system of linear and
homogeneous equations

(Si}j (k7 w) Dij (k7w) =0 (17)

Condition for the existence of a nontrivial solution
of (17) is the vanishing of the determinant detD =
w® + Wty 4+ %Iy + Iy = 0, where coefficients I,, a =
0,2,4 are some functions of k,f,g,h and f,g,h are
some functions of n (x),m (x),k and parameters A,,
a=1,23:
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As a result we come to bicubic dispersion equation

WO I (K, 0, 0)wt + 1h (K, 0, 0)w? + Ip (k,0,p) = 0.

(18)
From (18) it is clear, that in biaxial nematic with dis-
coidal molecules in general case propagation of three
acoustic oscillation modes w45 (k) = ¢f 55 (k)k?
also is possible corresponding to the first, second and
third sounds. Detailed analysis of the obtained spec-
tra is given in [4].



Let’s consider solutions of (17) corresponding
to modeswi,3 = cf43(0,¢)k?. Expression for

(51}51’2’3) (k) we are looking for in the form of decom-
position on three orthogonal vectors:

L3 123 1,2,3
o1 ) = Ryl 2 (09 + kx50 (k)
x1] xk]; 1,2,3,

From (17) we find that like in the previous case of
biaxial nematic with ellipsoidal molecules these solu-
tions are superposition of one longitudinal and two
transversal components. It can be shown, that at
f# — 0 sounds are cross-polarized with components
(51}512’3) (k)ﬁvéiz’g’) (k); at & — w/2 sounds are

cross-polarized with component (51}512’3’) (k).
4. CONCLUSIONS

On the basis of Hamiltonian approach the dynamic
theory of uniaxial and biaxial nematic liquid crystals
with molecules of different geometry is constructed.
For all types of liquid crystals nonlinear dynamic
equations are derived, acoustic spectra of collective
excitations are received and their polarization struc-
ture is studied. It is shown that in the case of uni-
axial nematics the first sound is mostly longitudinal
and the second one is mostly transversal; for biaxial

nematics the first, second and third sounds mostly
possess transversal polarization.
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INOJIAPN3AIINOHHBIE OCOBEHHOCTHU AKYCTHNYECKHNX CITEKTPOB B
OJHOOCHBIX 1 ABYXOCHBIX HEMATUYECKUX KNJIKWUX KPNCTAJIJIAX

M.IO. Kosaneeckuti, JI.B. Jloesunosa, B.T. Mauxesuy

IlpencraBiieHbr pe3yabTATHI HCCJIEIOBAHNS IUHAMUKH OTHOOCHBIX M JIBYXOCHBIX HEMATHYECKUX JKUJKUX KPHU-
CTAJUIOB € MOJEKYJaMH pPasaudHOl (hOpMBL. DTH KOHACHCHPOBAHHBIE CpeAbl 00JaalOT BHYTPEHHEH Mpo-
CTPAHCTBEHHON AHU3OTPONHEH, U JJId WX AJEKBATHOTO ONMHCAHUA HEOOXOAMMO BBEIEHNE TOTOTHUTEIbHBIX
JVHAMUYECKUX TTePEMEHHBIX. VIMU 9BASIOTCS BEKTOPHI TPOCTPAHCTBEHHON AHU30TPONUH U KOH(MDOPMAIHOH-
HBbIE cTenenu cBoOOabI. ViccienoBanne qUHAMUKY JAAHHBIX KOHIEHCHPOBAHHBIX Cpes Ha3upyercd Ha TaMUIb-
TOHOBOM (pOpMaM3Me, B PAMKAX KOTOPOrO BHIBEJEHBI HEIUHEHHbIE YPABHEHUs] IWHAMUKHU I OJHOOCHBIX
¥ JIBYXOCHBIX HEMATHYECKUX JKUJIKUX KPUCTAAIOB. [lo/yuenbr cieKTphl KOJUIEKTUBHBIX BO3OYKACHUN U HC-
CJTEJIOBAHBI UX TOJIFAPU3AIMOHHBIE OCOOEHHOCTH.

IMOJISIPI3AIIIMHI OCOBJIMBOCTI AKYCTUYHUX CIHEKTPIB B OJTHOBICHUX TA
ABOBICHNX HEMATUYHUX PIJKNX KPUCTAJIAX

M.IO. Kosanescvruti, JI.B. Jlozeinosa, B.T. Mauxesuy

IlpencraBiieno pe3yabraTi JOCTIKEHb JUHAMIKYM OJHOBICHUX Ta ABOBICHUX HEMATHYHUX DIIKUX KPUCTAJIIB
3 Mosekyaamu pizuoi ¢opmu. 11l KoHgeHCOBaHI cepeaoBUINa MAIOTh BHYTPINIHIO TPOCTOPOBY AHI30TPOIIITO,
TOXK JUIA 1X aAeKBATHOIO OMHUCY HEOOXiTHO BBEeAEHHS NOJATKOBHUX JAWHAMIUHUX 3Mimaux. Humu € BeKTOpH
IpOCTOpPOBOI aHizoTpomii Ta koudopManiitki cryneni ceoboau. Jocaimrenns TuHAMIKY JaHUX KOHIEHCOBA-
HUX CepenoBuIil 0a3yeThCd HA TaMLIBTOHOBOMY (DOPMaJizMi, y paMKaxX SKOTO BUBEAEHI HEJIHIWHI DIBHAHHS
IMHAMIKK JJIS OAHOBICHUX T8 JBOBICHHX HEeMATHYHHX piakux Kpucrtaaip. OTPHMAHO CHEKTPH KOJEKTHBHHX
30yMKeHb Ta HOCTLMKEHO X moaspusaniiiai ocobauBocTi.



