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Specific features of dynamic solitons in a nonlinear system described by a differential equation with a fourth-order
spatial derivative are discussed. Solutions of the linearized equation and the problem of scattering of a double-
partial wave by a point defect are analyzed. Conditions of existence of a nonradiative soliton are formulated and
demonstrated in the case in which the natural soliton frequency falls within the continuous spectrum of harmonic
oscillations of the examined system. These conditions are determined by the dispersion law of linear oscillations.

1. We discuss the properties of dynamic solitons in systems from the viewpoint of their linecar dynamics. By the
dynamic soliton is meant a nonlinear spatially localized disturbance of the examined system whose stability is ensured by the
presence of simple additive integrals of motion. Examples of such solitons are provided by the soliton of a nonlinear
Schrédinger equation (NSE) or by the magnetic soliton [1]. The dynamic soliton is commonly characterized by its natural
frequency whose value is one of the main soliton parameters. Traditionally, the dynamic solitons in the physics of condensed
matter were studied based on nonlinear differential equations with second-order spatial derivatives. For a scalar field, the
dynamic functional has frequencies of local states that necessarily fall beyond the continuous spectrum. Therefore, the natural
frequency of the dynamic soliton of this physical field, by analogy with the frequency of any localized excitation, must lie
outside the spectrum (for the NSE or the magnetic soliton, it must lie below the continuous spectrum).

The situation changes in the study of the dynamics of a discrete or continuous system described by differential
equations with higher-order (compared to the second order) spatial derivatives. In this case, the soliton frequency may fall
within the continuous spectrum of harmonic oscillations, and problems of soliton existence arise in the presence of linear
wave emission and radiative soliton interaction (for example, see [2, 3]).

Here, we want to demonstrate that the majority of accompanying effects are determined by the properties of the
lincarized harmonic oscillation equations for the examined system. These equations describe field asymptotes at large
distances from the soliton and contain abundant information on soliton solutions of nonlinear equations. In this connection, we
will analyze solutions of the linearized equation expressed in terms of the corresponding Green’s functions.

We restrict our consideration to a simple nonlinear model:
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that considers the highest-order dispersion and allows us to describe various situations arising in the soliton dynamics. We are
interested only in stationary states y( x, £) = W ( x) exp(—io¢) , that is, in the properties of the nonlinear equation
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where @ is the excitation frequency.



2. We first analyze solutions of linearized equation (2) without the term F(y). The law of dispersion (the
dependence of the frequency ® on the wave number k) of stationary states ( x) =\, exp(ikx) of linearized equation (2) has
the form

o(k)=-k* +k*. (3)

At the point where k* =kZ =1/2, the frequency o reaches its minimum ©, =—1/4 . Therefore, the continuous
spectrum of natural frequencies of harmonic oscillations lies in the frequency range ®, <®<eco.

The Green’s function of linearized equation (2) can be easily calculated
1) for frequencies ®> 0:
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2) for frequencies ®, < ®<0:
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An analysis of the Green’s functions given by Eqs. (4), (6), and (8) irrespective of the structure of the nonlinear term
entering into Eq. (2) allows us to conclude the following on soliton solutions of equations of this type.
1) The dynamic solitons with frequencies ®< ®,, have exponentially decaying oscillating tails, and if they are exact

solutions of Eq. (1), they cannot emit linear waves. The presence of nonmonotonically decaying tails is essential to the study
of soliton interaction. This was first discussed in [4].
2) In principle, soliton solutions cannot be obtained for frequencies ®,, <®<0, because the corresponding

stationary states have no decaying asymptotes.

3) A typical linear stationary state for frequencies @ > 0 is a quasi-localized oscillation whose first component is
localized in space, whereas the second component represents a standing wave with a constant amplitude [5, 6]. The presence
of these asymptotes means that the soliton solutions of Eq. (1) with frequencies > 0, as a rule, are accompanied by emissions
of harmonic waves. There are various explanations of the physical reasons for and the conditions of existence of nonradiative
solitons in this frequency range.

3. Solutions of the inhomogencous equation
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where fx) is a distributed force, can be written in terms of the Green’s functions. A solution of Eq. (10) has the form [7]
w(x):jc;m(x— X)F(xX)dx . (11)
Let a short-range force (simulating a point defect)
£(x)=Upd(x)w, 12)

be considered at first. For frequencies o< ®,, lying below the continuous spectrum, there exists a state localized near the
defect whose wave function
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is obtained from Eqs. (11) and (12) and whose Green’s function is given by Eq. (8). Solution (13) describing a generalized
local state was discussed in [8, 9]. The discrete frequency of local state (13) is specified by the relation

Uy =—4v(7* + ¢°) (14)

and exists only for U, <0.

4. Let us now analyze the problem of scattering of waves with frequencies > 0 by point defect (12). In this case, the
wave function can be represented in the form (see [7])
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where D(w) =1-U,G,(0). Taking advantage of the explicit form of the Green’s function given by Eq. (4), we can write a
solution of the scattering problem in the form

Woe™ + R(@)e ™ + M(w)e™, x<0,
Wy(x) = (16)

T(®)e™ + M(0)e ™, x>0,

where k and x are specified by Eqs. (5). Then the amplitudes of solution (16) are
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M(w) = ki/(o;f)o . A(0) = k{2x(x* + k) - Uy y— iU, (19)

from which we can derive the reflection and transmission cocfficients:
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Curiously, the resonant wave reflection may occur when
U, =2x(k* + %), (22)

given that r(w) =1 and #(®)=0. In this case, the asymmetric stationary state W(x)=Wyqs(x)+VW;(x) appears, which
represents superposition of the standing wave

2N, sin kx, x<0,
Yo (x)= (23)
0, x>0,
existing only in a half-space, and the state
V1 (%) = M(w)exp(—x|x]) 24)

localized near the defect. Frequencies of this asymmetric state are specified by Eq. (22) and make sense only for U, >0.

Analogous peculiarities of wave scattering by defects were discussed recently in [10-13].

5. To identify the conditions at which emission at frequencies ®> 0 is absent, we now consider a solution of
linearized equation (10) with the driving distributed force f{x) localized in a small interval x around x = 0. Let fx) decrease
with distance faster than exp(—x]x|) . Then, according to Eq. (11), the solution beyond the region of force application is

V() = —— 5 {Btiye™ + Ly}, (25)
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where the upper sign is for x> 0 and the lower sign is for x <0,

B(k)= %j f(x)e™dx, L(x)= %j F(x)edx. (26)

If for a certain value &k = p the Fourier component of the distributed force vanishes, that is, B(p) = 0, the forced
oscillation with frequency ®= ®( p) becomes nonradiative at infinity. The state then becomes localized:
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Linear oscillations at large distances from the source are completely quenched at the expense of wave interference [2,
3]. For the symmetric force distribution fx) = {—x), this condition has the form

[ £(x)coskxdx=0, (28)

whereas for the antisymmetric distribution {—x) = —fx)

[ r(0sinkxdx=0. (29)



However, it must be remembered that since the frequencies of this state fall within the quasi-continuous spectrum, in

the linear dynamics its weight is very small, of the order of 1/ N , where N is the number of atoms in the examined 1D
chain. However, it is well known that the weight of these isolated stationary states may be radically different in the nonlinear
dynamics (see [1, 7]).

6. Obvious mathematical conditions (28) or (29) of solvability of the inhomogeneous differential equation allow us to
obtain the parameters of the stationary dynamic nonradiative solitons.

Analyzing the structure of Eq. (2), we expect that it admits a soliton solution of the form

= 30
Y(0)=—. (30)
where A = const and x is related to the frequency ® by Eq. (5). Substituting solution (30) into the nonlinear term F(y(x)) of

Eq. (2), we can consider it as an external force fx) = f—x). According to Eq. (28), soliton (30) will be nonradiative when
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Not to crowd our calculations with unwicldy formulas, we perform them scparately for the following cases:
1) y; #0and vy, =y, =0,2) y, #0and y, =y, =0,and 3) y; #0andy, =y, =0.
In the first case, we derive the parameters of soliton (30) from Eqs. (31) and (5) in the form
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We see that there always exists soliton (30) nonradiating linear waves for y, >12. All the parameters of this soliton, except

the amplitude A, can be derived from an analysis of the lincarized equation. It is easy to verify that the exact solution of
Eq. (2) corresponds to
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In the second case (Y, #0and ¥, =v; =0), we have
k2=3(Y2_4), KzzYz_lzp o= 3(72_4)(272_12). G4)
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From Eq. (2) we obtain the amplitude:
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Thus, soliton (30) with parameters (34) and (35) exists for a system with vy, >12.
Finally, in the case in which y; #0and v, =7y, =0, from Egs. (31) and (5) it follows that
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is derived from Eq. (2). It is interesting that the soliton exists only when 0< v, <6/5.

We now apply the above considerations to an analysis of a more complex soliton solution of simplified equation (2)
for v, =v, =v; =0. In this case, we expect the presence of the soliton
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Because in this case y(—x) = —y(x), condition (29) must be used:
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From condition (39) we obtain k* =11k~ and, taking advantage of Eq. (5), we find
k=01, ©=0.11. (40)

These parameters correspond to unique nonradiative solution (38). For the exact solution obtained in [14], the amplitude was
A=+6/5.

It is clear that the above-formulated conditions of existence of a nonradiative dynamic soliton and their demonstration
for some particular cases provide no recomendations for a search for an analytical soliton solution. However, they
demonstrate that the structure of the dynamic soliton is determined by the dispersion law of the linearized equation no less
than by the form of nonlinear terms entering into the dynamic equations.
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