Magnetic soliton motion in a nonuniform magnetic field
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We discuss the dynamics of a magnetic soliton in a one-dimensional ferromagnet placed in a
weakly nonuniform magnetic field. In the presence of a constant weak magnetic-field

gradient the soliton quasimomentum is a linear function of time, which induces oscillatory
motion of the soliton with a frequency determined by the magnetic-field gradient; the phenomenon
is similar to Bloch oscillations of an electron in a weak electric field. An explicit description

of soliton oscillations in the presence of a weak magnetic-field gradient is given in the

adiabatic approximation. Two turning points are found in the motion of the soliton and the varieties
of bounded and unbounded soliton motion are discussed. The Landau—Lifshitz equations are
solved numerically for the case of a soliton moving in a weakly nonuniform magnetic field. The
soliton is shown to emit a low-intensity spin wave near one of the turning points due to
violation of the adiabatic approximation, and the necessary conditions for such an approximation

to hold are established.

1. INTRODUCTION

A remarkable feature of the nonlinear dynamics of the
magnetization of ferromagnets and antiferromagnets is the
presence of dynamic magnetic solitons. By a dynamic soliton
we mean a spatially localized perturbation in the magnetiza-
tion field whose stability is ensured by the presence of cer-
tain integrals of motion for the dynamical equations of this
field. In one-dimensional ferromagnets, where the magneti-
zation dynamics is described by Landau—Lifshitz equations,
a complete description of all types of nonlinear excitations is
possible; in particular, there exists an exact analytical de-
scription of dynamic solitons in uniaxial and biaxial mag-
netic materials in a uniform magnetic field in the absence of
dissipation.!?

The phenomenological Landau-Lifshitz equations for
ferromagnets have a quantum mechanical basis and provide
an accurate explanation of the dynamical propertics of mag-
netically ordered media. This suggests the possibility of
broadening the range of physical phenomena to which the
Landau-Lifshitz equations can be applied. In particular, we
will describe the important effect of nonuniformity of the
magnetic field on the motion of a magnetic soliton. To for-
mulate the problem within a general setting, we start by re-
calling the basic principles of the nonlinear dynamics of the
magnetization of ferromagnets at low temperatures.

The instantancous state of a ferromagnet is determined
by the magnetization vector as a function of position and
time, M(r,?). According to current ideas about the exchange
spin nature of ferromagnetism, the magnitude M, of the

magnetization vector remains unchanged, so that the magne-
tization dynamics reduces to the precessional motion of this
vector.> In other words, if we introduce the polar angles 6
and ¢, the magnetization vector M of the ferromagnet can be
written as

M+ iM,=M, sin §e*,  M,=M, cos 6. (D
In terms of the angular variables 6 and ¢, the Landau—
Lifshitz equations
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take the form
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where the right-hand sides of the equations contain varia-
tional derivatives of the total magnetic energy of the mag-
netic material, £, with respect to the magnetization and the
angular variables, and u, is the Bohr magneton. The total
energy [/ can be written as

E= f wif, o} d’x, (3)

where the magnetic energy density w depends on the angular
variables 6 and ¢ and their gradients.

We limit our discussion to the case of a ferromagnet
with uniaxial magnetic anisotropy placed in an external mag-



netic field H that is directed along the anisotropy axis n. We
identify the z axis with this axis. Then the magnetic energy
density can be written as’
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with « being the exchange constant and S the anisotropy
constant. The function w,(6,V 6,V ¢) depends on the gradi-
ents of the angular variables but does not depend explicitly
on the angular variable ¢ (the phase). Some statements re-
ferring to a magnetic soliton are unrelated to the specific
form of the function wy if the latter depends on the specified
arguments.

The Landau-Lifshitz equations for a uniaxial ferromag-
net always has two constants of motion: the total magnetic-
excitation energy F, and the projection of the total magnetic
moment on the anisotropy axis. The second constant of mo-
tion, related to the presence of the cyclic coordinate ¢, can
be conveniently written as

1
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The normalization (5) makes it possible to assume that /V is
the number of magnons whose bound state forms the
soliton.!2

If the external magnetic field is uniform, the total exci-
tation field momentum (total quasimomentum)

i M,

P=— f (1—cos )Vod’x (6)
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is also conserved (in addition to £ and /).

A dynamic magnetic soliton is a solution of Egs. (2)
localized in space, moving with a constant velocity, and cor-
responding to finite values of the constants of motions £, N,
and P. Such a solution has the form

0=0(r—Vt), o=Qt+{r—Vi), (7)

where V is the soliton velocity, ) is the frequency of the
soliton’s internal precession, and the functions 6(¢) and ¢(¢)
possess the following properties:

6(£)=0.

Hence a magnetic soliton is a two-parameter excitation, with
V and Q being the parameters.

The constants of motion £, N, and P are connected by a
remarkable relationship, which is independent of the type of
the functions (7); namely, under small variations of the func-
tions ¢ and ¢ the variation of the total energy is'~

SE=V-6P+hQSN. (9)
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This yields two equations of motion for the soliton:
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where the first determines the rate of variation of the position
of the soliton’s center of gravity, and the second the rate of
variation of its phase. In a uniaxial ferromagnet in the pres-
ence of a uniform magnetic field, the position of the soliton’s
center of gravity and its phase are cyclic variables, which
ensure the validity of the following conservation laws:

N=const. (1)

H
N

P=const,

In this paper we study the dynamics of a magnetic soli-
ton in a uniaxial ferromagnet in a weakly nonuniform mag-
netic field; in particular, we investigate the case of a constant
magnetic-field gradient:

dH

H=H,+ nx, 7]:3.

(12)

In Sec. 2 we show that in this case the soliton position
ceases to be a cyclic variable, with the result that the quasi-
momentum P ceases to be a constant of motion. When 7 is
small, the quasimomentum P is a linear function of time,
which changes the soliton dynamics dramatically.

For an object for which the calculations can be carried
out analytically we take a one-dimensional easy-axis ferro-
magnet. The magnetic energy density w, of such a ferromag-
net in terms of the angular variables 6 and ¢ is

1 -
+ 7 BM; sin® 6.
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We discuss the dynamics of a magnetic soliton with the
magnetic energy (13) in a one-dimensional uniaxial ferro-
magnet. In a uniform magnetic field, the energy of such a
soliton is a periodic function of P (Refs. 1 and 2):

E:Eo(P,N)+2/L0NH0, EO(PDN):2W0]0K(P>N)>
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where W,= 2M§ JaBa? is the surface energy of the domain
boundary; I, = \a/B> a, with I, the characteristic magnetic
length and a the interatomic separation; P,=mha’ M,/ u,;
and N,=2a’1,M,/u, (here N, coincides in order of mag-
nitude with the maximum number of spin deviations that can
occur over the length /,, and P,=2msfi/a, where s is the
atomic spin, which determines the magnetism of the mate-
rial).

If the magnetic-field gradient is so weak that #n/,<H,
then in the presence of a small 7 the dependence of the
energy F on P can still be described by Eq. (14) but the field
momentum P must be assumed to be a linear function of
time (this corresponds to what is known as the adiabatic
approximation).

If the momentum P is a linear function of time, Eqgs.
(14) and (10) imply that the soliton oscillates with a fre-
quency determined by the magnetic-field gradient. Since
such motion is similar to the oscillations of a Bloch electron
in a uniform clectric field, we call it Bloch oscillations. The
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phenomenon of Bloch oscillations of a magnetic soliton in a
magnetic field with a weak gradient was noted recently by
one of the present authors in Ref. 4.

In Sec. 3 we study the dynamics of a one-dimensional
soliton in the more general case of a weakly nonuniform
magnetic field. If the nonuniformity of the magnetic field is
located in a bounded interval of the one-dimensional mag-
netic material (the x axis), it creates an effective potential
barrier for the soliton’s motion. We discuss the various vari-
ants of bounded and unbounded soliton motion in the pres-
ence of different potential barriers.

Finally, in Sec. 4 we present the results of a numerical
solution of the one-dimensional Landau-Lifshitz equations
for the case of a soliton moving in a weakly nonuniform
magnetic field. We find that when a soliton is in oscillatory
motion, near one of the turning point a low-intensity spin
wave with a frequency () is emitted. Such emission of a spin
wave is due to the violation of the condition of validity of the
adiabatic approximation. The criteria for the applicability of
such an approximation are discussed.

2. BLOCH OSCILLATIONS OF A SOLITON IN A MAGNETIC
FIELD WITH A CONSTANT GRADIENT

Let us study the soliton dynamics of a one-dimensional
uniaxial ferromagnet with uniaxial anisotropy placed in a
nonuniform magnetic with a weak gradient of type (12). As
noted earlier, in a nonuniform magnetic field, P ceases to be
a constant of motion. Let us examine the emerging time de-
pendence of the quasimomentum defined according to the
definition (6) and the property (8):

dP  #hM, . dedl  Jp b

E:2M0 f SIHGEQ*SIHGEE dx. (15)
We now use the equations of motion (2):
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Since the magnetic field depends on the x coordinate, the
magnetic energy density also depends on x explicitly:
w{ 6, ¢;x}. This means that
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Thus, the quasimomentum is a linear function of time:
P(y=P(0)—27nu Nt, P(0)=const. (18)

Let us now calculate the total energy £ of a soliton
moving in the field of the weak gradient 7. A weak gradient
of the magnetic field can be interpreted as a weak perturba-
tion of the soliton’s motion in a uniform field. Then, in the
adiabatic approximation,” ’ the soliton retains its shape and
the distribution of magnetization in it remains the same func-
tion of x given by Eq. (7):

6=0(x—X(0). @=¢o() +p(x—X(1)), (19)

where the coordinate X(¢) of the soliton’s center of gravity
and its phase ¢q(¢) are functions of time to be determined.
The main dynamical parameters of the soliton, the velocity V
of the center of gravity and the frequency (), are given by
obvious relationships:

dX ngO
V= E, Q= 7 (20)
The total soliton energy can be written as
E:Eo(P,N)JFz/,LoNHOJF ﬂMof (I*COS G)XdX,
(21)

where E,(P,N) is defined in (14), and in the third term on
the right-hand side we must bear in mind that in the adiabatic
approximation 6(¢)=6(— ¢):

f (1—cos G)XdX:f [1—cos 8(x— X(£))]x dx=X(t)

Xf (1—cos 8(&))dé=2nu,NX.
(22)
Combining (21) and (22), we get
E=E (P, N)+2u NHy+2nu NX. (23)

We see that the energy F is a function of three dynamical
variables, P, X, and N, and that the expression (17) for the
time derivative of the momentum serves as one of the ca-
nonical Hamiltonian equations:
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On the other hand, selecting the initial coordinate of the
soliton appropriately, we can use (23) and (14) to find the

explicit time dependence of the coordinate of the soliton’s
center of gravity:

Wolcos(mP( )/ Py)—cos(mP(0)/ Py)]
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where P(?) is given in (18). If P(0)#0 holds for short
times, as long as nu,Nt<< P, is satisfied, the soliton is in
uniform motion:

X(H)=X(0)+

27 W, sin(wP(0)/ Py)
P, sinh(2N/N,)

X(t)=X(0)+ (26)

For long times (npu,Nt> P,), the soliton is in oscilla-
tory motion. As Eq. (25) implies, the amplitude of the spatial
oscillations is

Wo
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Naturally, it is inversely proportional to the magnetic- field
gradient and drops off rapidly as N increases, i.e., as the
soliton grows in size:
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where V,,=2gM,+ «f is the minimum phase velocity of the
spin waves (g=2u,/h).
The oscillations of the soliton precession frequency can

be found from the second formula in (10} and the definition
(23):

1 9Fy(P,N)

Q(t):g N +gH,+gnX(1), (29)

with the first term on the right-hand side specified as
dEy(P.N) . cos’(wP(1)/12P,)
ON 7% cosh’(N/N;)
sin’ (7w P(H/2P,)
~ sinh®(N/N) |

where w,= gBM, is the frequency of the homogeneous fer-
romagnetic resonance.

(30)

3. SOLITON MOTION IN A NONUNIFORM MAGNETIC FIELD

We now turn to the more general problem of the dynam-
ics of a soliton moving in a one-dimensional uniaxial ferro-
magnet placed in a nonuniform magnetic field H(x) that is
parallel to the anisotropy axis. We assume that the function
H(x) varies in an arbitrary manner as a function of x but that
the characteristic spatial scale over which H(x) varies is
much larger than the soliton width. Since the magnetic en-
ergy density of a uniaxial ferromagnet is independent of the
phase ¢, the energy F and the number V of magnons remain
constants of motion. The dependence of the soliton energy
on the three dynamical variables P, X, and N in the adiabatic
approximation is an obvious generalization of (23), i.c.,

E=Ey(P,N)+2u,NH(X), (31)

where E,(P,N) is still given by (14) and corresponds to the
soliton energy in the absence of a magnetic field.

The time dependence of the quasimomentum P is given
by an expression that is an obvious generalization of (17):

ap_ - dHX)
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Equation (32) together with (31) and (14) solve the problem
of the time dependence of P. However, it is more convenient
to study the motion of the center of gravity directly by using
the explicit form of single-soliton solutions of the Landau—
Lifshitz equations.

In the reference frame attached to the center of gravity
(&€= x— V1), the single-soliton solution of Eqs. (2) for a uni-
form magnetic field has the form'

L0 2
2 (kp— Kk,)cosh(2k€)+ K+ Ky~ 2K

(32)
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where k= (E—2uoNH)/2W,1, is the inverse of the soliton
width, k,,= 1, ' tanh(N/N,), k ;= 1/, I, and the soliton ve-
locity V and the angular precession frequency () are related
to the parameter « as follows:

V=Vl (k= k) (13— ), (34)
Q=gH+gMyBl1—(x1p)>—(VIV,)?]. (35)

Since the parameter « depends on the soliton’s total energy
and coordinate of the center of gravity, it iS convenient to
take it as the dynamical characteristic of the soliton. In par-
ticular, Eq. (34) shows that the possible movements of the
soliton are limited to the range of values of « for a fixed V:
KnSKSKy.

The motion of a soliton in a slowly varying magnetic
field can be described in the adiabatic approximation by the
same Eqs. (33)—(35) if we put é=x— X(¢) in them. Here the
position of the center of gravity X(¢) of the soliton at time ¢
is uniquely determined by the laws of conservation of the
energy and the projection of the total magnetic moment on
the z axis. In a nonuniform magnetic field, the parameters F
and N, which enter into Eqs. (33)—(35), are still constants of
motion, and the velocity V, the precession frequency (), and
the inverse of the soliton width, «, become slowly varying
functions of time, and functionally the quantities V, ), and «
are determined by the running values of the magnetic field H
at the soliton’s center of gravity X(¢):

 E—2p,NH(X)
B 2 Wi, ’

Q(X)=gH(X)+gM,

k(X)

E—2u,NH(X)
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where  H,=(E—2Wylyky) QuoN)" ! and  Hy=(F
—2Wylyk ) (2o N) 1 are the values of the magnetic field
at the turning points x,, and x;, of the soliton (Fig. 1).

Integrating the equation dX/dt= V(X) together with Eq.
(37), we obtain the dependence of the coordinate X of the
center of gravity on time ¢ in the implicit form

V(X)=

Ny
f:m[F(X)*F(X(O))], (38)

where

dX
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O ) T HOOTHX) B,
If the magnetic field H(x) reaches both characteristic values
H,, and H,, for finite x, the soliton is in a state of bounded

motion between the turning points x,, and x;, (Fig. 1a) with
a period

— Nl
I= o )~ P (39)

In a field with a constant magnetic-ficld gradient
n=dH/dx, the soliton is in a state of harmonic oscillatory
motion, where neither the frequency Q,=2gl,(N/Ny)| 7|
nor the oscillation amplitude AX=|xy—x,|/2
=(N,BM,/N|7|)/sinh(2N/N;) depends on the soliton en-
ergy E; they depend only on the number N of magnons. If



x FIG. 1. Soliton motion in a nonuniform magnetic field:
(a) bounded motion, (b) inbounded motion in the direc-
tion x=o, (c) unbounded motion in the direction
x=—, and (d) unbounded above-the-barrier motion.
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H(x) reaches only one value, H,, or H;,, the soliton is in
unbounded motion, the reflection of the magnetic soliton
from a ‘‘magnetic potential barrier”” (Figs. 1b and 1c). If
H,,<H(x)<H,, the unbounded motion takes place above
the barrier (Fig. 1d).

4. COMPUTER SIMULATION OF SOLITON OSCILLATIONS
IN A NONUNIFORM FIELD

To verify our results we used a computer to numerically
solve the one-dimensional Landau—-Lifshitz equations
M MX M ™ H 40
i )
— —8MX| An(M-n) —a —— + H(») |, (40)

where the unit vector n is directed along the anisotropy axis
(the z axis), and the nonuniformity of the magnetic field is
characterized by a constant value of the field’s gradient
n=dH/dx. Equations (40) were solved by a standard
fourth-order Runge—Kutta method with automatic selection
of the timestep, and the spatial derivatives 9°M/dx*> were
calculated via a five-point finite-difference approximation;
the number of grip points in the variable x was n=400. At

first glance it seems that Eqs. (40) are entirely uscless, since
in addition we must know the soliton’s initial state in the
nonuniform magnetic field, and this is unknown. Hence we
employed the following method of ‘‘preparing’” a soliton
with fixed values of the parameters £ and /V in the nonuni-
form magnetic field. First we constructed an effective mag-
netic field H(x) by joining a horizontal section H(x)
=const with a slanted section with the given gradient dH/dx
(Fig. 2a). Then a soliton was placed in the horizontal section
(curve 1), for which Eqgs. (33)—(35) were used. Finally the
procedure of numerical solution of Eqs. (40) was initiated.
As the soliton moves it enters the slanted section, where the
field is nonuniform (curve 2). At the moment when the soli-
ton is entirely in the slanted section the horizontal section is
replaced by a slanted one (Fig. 2b). Since the amplitude of
magnetization oscillations in this section is infinitesimal, the
soliton is ‘‘unaware’’ of such a substitution {curve 2’).

Figure 3 depicts the results of computer simulation of
the soliton motion with the following values of the param-
eters:

FIG. 2. “‘Preparation’’ of a soliton with given values
of the parameters F and N: (a) the soliton is in an
effective field, and (b) the soliton is in a field with a
constant gradient.
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The results of our calculations agree fairly well with
those found from the formulas of the adiabatic theory. For
instance, for the given values of the parameters, the theoret-
ical values of the period and amplitude of the oscillations are
7=59.8/gM,B and A X=8.951,. The numerical calculations
yield 7=60.4/gM, 8 and A X=8.71,, which are close to the
theoretical values. However, more accurate calculations
show that near the right turning point x,; the soliton emits a
small-amplitude spin wave whose frequency corresponds to
the frequency of magnetization precession in the soliton, ()
(Fig. 4). This phenomenon is related to the violation of adia-
baticity and is described by higher-order corrections in the
magnetic-field gradient.

The violation of the adiabatic approximation results
from the interaction of the soliton and the spin waves, where
the spin waves with the frequency () play the major role. The
domain of existence of the waves, x<<x,, is bounded by the
turning point x, for these spin waves, where x, can be found
from the equation gH(x,) + gM,B=Q(X).

Using the formulas in (36), we can calculate the distance
between the soliton’s center of gravity and the boundary of
the spin-wave range:

6

SR i (41)
Km |7l

We see that the distance is inversely proportional to the field
gradient % and depends on X, the coordinate of the center of
gravity.

According to (33), the amplitude of magnetization oscil-
lations in the soliton falls off at large distance as e .
Thus, the interaction of the soliton and the spin waves is
characterized by the small parameter exp(— x| X—x/). Corre-
spondingly, the adiabatic approximation holds if the distance
from the center of gravity X to the spin-wave turning point

x, is much larger than the soliton size « '

| X— x| k(X)>1. (42)

| X=x] = (1 +K3,1)

FIG. 3. Oscillatory motion of a soliton in a nonuni-
form magnetic field.

We note that the adiabatic approximation may be valid in
one spatial region and invalid in another. According to (41),
the distance |X—=x,| reaches its minimum value
BM,«? /| 77| near the right turning point. At this point the
adiabaticity condition (42) amounts to the requirement that
the magnetic-field gradient be small:

<BM, i3, (43)

dx

Hence, the adiabatic theory that we developed to describe the
soliton motion in a weakly nonuniform magnetic field is
valid if

dH
dx M

Io
BM,

s v
tanh’ - <1. (44)

1

As the magnetic-field gradient gets stronger, the adiabatic
approximation is violated first of all near the turning point
that corresponds to the maximum admissible value of the
magnetic field (which in our case is the right turning point).

MM,
0.2t

0.1r

(=]
E3
<>
| <>
8D
q
D
<>
EI\°z<>
G
>
<5
o
<>
¢
o
o
8 g

0.2+

FIG. 4. Emission of a spin wave by a magnetic soliton.



For the values of the parameters used in the computer
simulation of soliton oscillations, the left-hand side of (44) is
£=0.3, which is the limit of the applicability of the adiabatic
approximation. Near the left turning point the condition (44)
is replaced by a less stringent condition,

SR el L) 45
BM, | dx, ™ *)
whose left-hand side in our example is £ =0.017. Note that
exp(—1/e) is the small parameter in the adiabatic approxi-
mation.

Thus, a magnetic soliton placed in a nonuniform mag-
netic field can be in a state of periodic motion with a fre-
quency Q, of order 10° Hz.
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