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On the problem of stable profiles of deluvial slopes
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Zusammenfassung. Dieser Aufsatz beschreibt mathematische quclle der Hangspiilung. Der
Fall einer unverinderlichen Untergrenze des Hangs wird ebenfalls in Betracht gezogen.

Summary. This article describes mathematical models of the deluvial process with and without
basal recession.

Résumé. Larticle suivant décrit des modeles mathématiques du processus deluvial. On prend
aussi en considération la fixation de la base du profil.

The general solution

In modelling the deluvial process, one commences with the continuity equation
for unconsolidated material first obtained by Ex~NEr (1922).
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where ¢ is the river sediment discharge. . Y
The model of deluvial slope development is analogous to that for stcam

profile development in a river (VELIKANOV, 1958). '
In the case of a river M. A. VELIKANOV has obtained the following value for a

river sediment discharge:

@ g=a(Zp

After equation (2) has been linearized, then the basic equation of hydrodynamics
is obtained from equation (1) above:
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From the model for the slow wash of viscous material along the surface of a slope
the following sediment transport law is obtained:

_ gfsina
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where gPsina is the water discharge which is considered to be constant; and gis

37
the sediment concentration.
Some physical theory similar to M. A. VELOKANOV’s is necessary for the de-
finition of the g value depending on current flow rate along the slope or from it.
As an example of one approximation we may write @ in the form:

) o= (AX*+ BX+O) %

for convex-concave slopes.

The solution of equation (1) under the conditions (4), (5) may be obtained
using Legendre polynomials (V. M. Moskovkin, A. M. TRoFIMOv, YU. V. BABa-
Nov, 1975):
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@ Co = (n—]— %) fq:(Z)P,.(Z)dZ (n=0,1,2..),

where the variable X is connected with the variable Z by the relation:
1—
® x=r+@r I

where P, g are the roots the quadratic 4AX2 + BX + C = 0.

Aboundary condition function is required for y(.X; #), and the function ¢(X)
sets the initial profile of the slope. An important property of solutions to equation
(3) of parabolic type is that they ‘forget’ the initial conditions as time passes, i.e.
their solutions with # increasing depend much less on details of initial conditions.
We may consider the process in the opposite time sense for a brief period, using
equation (3) as an illustration.
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Taking this into account the period of time couldn’t be longer than that for the
current in which the deluvial process took the place described by equation (3).

The more it is desited to know about previous conditions, the more precisely
we must know present ones. Small flunctuations of present profile of relief lead to
great changes of previous state.
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Thus, considering the problem in the opposite direction for a long period of
time makes no sense.

Constant basal recession

Let us now consider a particular solution obtained from equation (3) under con-
ditions of steady slope-base recession. This may be done with the help of the
specific boundary condition:

(10)  y(B#, #) =0.

It shows that the rate of slope recession goes at a constant rate B. In general, we
may write the boundary condition as:

¥(f®), 1) =0.

But in case (10) the exact analytical solution for the slope profile can be obtained
as follows:

To make the solution of equation (3) easier for the boundary condition of a
movable base (equation (10)) we make the transformations:

1) X' = X—Bt
¢ =t
Equation (3) then becomes:
0 o2 0
(12)  Z2=K. 35+ B%
To make the writing easier we omit primes for the transformed #and X. The same
equation had been discovered by M. Hirano (1971, 1972). The boundary con-

dition (10) for movable boundary changes into the simpler one for a fixed bound-
ary:

(13 (0, #) = 0.

The initial condition is: y(X, 0) = ¢(X); which is unchanged by the transforma-
tion (11) because:

(14 (X', 0) = o(x)

The solution to equation (12) may be obtained by the method of separation of
variables for the half plane X’ = 0.
The parameter of separation we took as

B2,
—ie

The final solution of (12), (13) and (14), taking account of the transformation (11)
leads to the solution in the form:

— 2
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x 4K: 4Kr
4 —e dz.
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