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The dynamic models of geomorphological systems
(the qualitative theory of dynamic systems’ application)

by
A. M. TroriMov and V. M. Moskovkin, Kazan, USSR

with 1 figure

Zusammenfassung. Dieser Aufsatz befafit sich mit einem breiten Band von Modellen — neu fiir die
Geomorphologie —, die auf der qualitativen Theorie dynamischer Systeme beruhen. Folgende Modelle
werden diskutiert: zum ersten dynamischen Modelle von Kiisten-Hangsystemen — ein Modell der In-
teraktion zwischen Hangbereichen der Spiildenudation und -akkumulation mittels des dazwischenligen-
den Transportbereichs sowie dynamischen Modelle der Hangunterschneidung; zum zweiten ein dy-
namisches Modell eines Schutthangs, ein dynamisches Modell von Rinnenspiilungsprozessen und dy-
namische Modelle, die auf dem Gleichgewichtskonzept von F. AHNERT beruhen.

Die behandelten Modelle sind anwendbar auf die Analyse der Stabilitit und Kontrolle von Hang-
systemen und auf die Vorhersage ihrer Reaktionen auf Verinderungen von Systemkomponenten,
einschliefilich der Abschitzung von Reaktionsverzdgerungszeiten (lag effects) und der Zeitspannen bis
zur volligen Anpassung des jeweiligen Systems an diese Verinderungen (relaxation times).

Summary. This paper deals with a wide range of models, new for geomorphology, that are based on
the qualitative theory of dynamic systems. The following models are discussed: first, dynamic models of
shore slope systems — a model of the interaction between wash denudation and accumulation zones by
way of the intervening transit zone and dynamic models of undercut slopes; second, dynamic models of
slope systems — a dynamic model of a talus slope, a dynamic model of gully processes and dynamic
models based on the equilibrium concept of F. AHNERT.

The models discussed can be applied to the analysis of stability, to the control of slope systems and
to the forecasting of their reactions to changes of system components, including assessment of the
resulting lag effects and relaxation times.

Résumé. Cet article traite d’un large éventail de modeles — nouveaux en géomorphologie — qui sont
basés sur la théorie qualitative des systémes dynamiques. Les modeles suivants sont discutés: (1) des
modeles dynamiques de systémes de pentes de plages — un modéle de I'interaction entre ’érosion par 'eau
et les zones d’accumulation par 'intermédiaire de la zone de dérive et des modeles dynamiques de
versants sapés a la base. (2) des modeles dynamiques de systémes de pentes — un modele dynamique des
pentes d’éboulis, un modéle dynamique des processus de ravinement et des modéles dynamiques basés
sur le concept d’équilibre de F. AHNERT.

Les modeles discutés peuvent étre appliqués i P'analyse de stabilité, au contrdle des systémes de
pentes et a la prévision de leurs réactions aux changements des composantes du systéme incluant I’établis-
sement des effets de retard et des temps de relaxation.
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The first mathematical models of geomorphological processes, based on the qualita-
tive theory of dynamic systems, were ﬁ)rmu ated in biochemical and biological
kinetics and ecology (LoTka 1925, VOLTERRA 1931); at present they are intensively
being developed, especially in the field of ecology (ALEkSEYEV 1976, SMITH et al.
1976). This theoretical work may find application in the modelling of geomor-
phological processes as well, for instance, in the construction of models of geog-
raphical interaction for the forecasting of landform evolution (SiMoNOV et al. 1976).
We suggest, new for geography and geomorphology, a wide scope of models,
based on the qualitative theory of dynamic systems. It is not advisable to divide
these models rigidly into groups. We will view them rather as a single group of
dynamic models of natural (slope) systems.

All the models under consideration in this paper are reduced to the dynamic
systems, which are a maximum of the second order (the system of the two ordinary
autonomous differential equations of first order). In a mathematical sense there are
some differences in the structure of the suggested models. First, there are the dy-
namic models (systeme) that consist of the system of the ordinary differential equa-
tions themselves of the first order. Second, there are the dynamic models that
consist of one ordinary differential equation of the first order, while the differential
equations which enclose it are transformed into algebraic ones. The latter simplified
models are known, for instance, in chemical kinetics when in some of the equations
of a dynamic system the velocities’ change (dC//dt) of the (C;) reacting substances’
concentrations are proportional to each other and these differential equations are
transformed into algebraic ones reducing them to one ordinary differential equation
of the first order.

The dynamic models of geomorphological (slope) systems are applicable to
analysing stability, to forecast and control, to the accounting of time lags and to the
determination of relaxation time in the systems. The first means a time lapse of any
external effect on the system until the latter reacts to this effects. The second means
the time lapse after a change of external conditions until the system is completely
adapted to the new conditions (achievement of dynamic equilibrium). Due to nega-
tive feedbacks the system has a tendency towards some stable state (dynamic
equilibrium) when the external factors remain stable. In this connection one of the
problem of an optimum consists of determining these states and transforming the
system into them as soon as possible. This is equivalent to a time decrease in the
system. The models mentioned above constitute a particularly adequate technique
for developing the theory of the dynamic equilibrium relief.

The aim of this paper is restricted to the construction of dynamic models, to
the analytical solution of dynamic systems and to the analysis of their stable states.

.

1 The dynamic models of slope systems

1.1 The model of interaction between denudation area and accumulation area
through the area of a slope’s transit

A slope’s development can be modelled using the dynamic system of second order
which describe the interaction of a weathered waste of the denudation area with the
accumulation area by way of the transit area (TROFIMOV & MOSKOVKIN 1978)
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(1.1-1) dy,/dt = £, (y5, y2) - £, (y1, y2)
dy,/dt = £, (y1, y2) + £ (v2) = £4 (y2)

where y;, y; are the weathered waste’s amounts in the denudation and accumulation
regions: f; (y1, y2), f3 (y2) are the rates of the weathered waste’s development in the
denudation and accumulation regions; f; (yy, ,) is the rate of the weathered waste’s
inflow into the accumulation area from the denudation area; {, (y,) is the removal
rate of the weathered waste from the accumulation area by transport. At the initial
moment one can set y; (O) = a, y, (O) = v. Generally, the thickness of a weathered
waste is noticeable in the accumulation region. Thus it may be considered that in
most cases f; (y,) = O. The system (1.1-1) can be tested for a stability of the special

point’s solution, which corresponds to the dynamic regime g? = %F = O, which

indicates that the amount of waste developing in the denudation region is equal to
that of the amount coming into the accumulation region. The latter, in its turn, is
gl)ual to the waste’s amount being removed from the accumulation area (f; (y,) =

In the absence of undercutting (f4(y,) = O) a substantial waste accumulation
occurs in the accumulation area. This produces a feedback in the first system’s
equation (1.1-1). With the waste increase in the accumulation area, there begins a
decrease of waste flow to this area from the denudation area through the transit area,
due do the decrease in the steepness of the transit area. In the course of time the slope
development stabilizes. The transit area is stable when there is no decrease of the
denudation area by enroachment of the accumulation area, i.e. when$; (y - y2) = f;
(y1)- However, in nature, the denudation region’s reduction occurs more often,
which causes a stabilization in a slope’s development as well. In this case one can
design the following model: the weathered waste’s development rate in the denuda-
tion area is represented in the form

(11—2) fl (Y1, y2) =da (ho—h) 1

i.e. when the weathered waste’s layer thickness equals zero (h = o), its development
rate is the greatest; when weathering does not effect the bedrock there exists the
limit thickness. In the formula (1.1-2), 1 is the length of the denudation area. If the
profile shapes of the denudation and accumulation areas are sufficiently rectilinear,
the denudation area’s length depends upon the accumulation area in tKe following
way:

(1.1-3) 1=K (Yomary2)”

When y; = yyms the denudation region disappears, i.e. the accumulation region
overlaps it completely. The thickness%n in the formula (1.1-2) represents the ratio of
the weathered waste’s amount (y;) to the length of the denudation area (the plain
problem is being considered

(114) h = y/l = y/k (Yamey2)":
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Consider the incoming waste’s velocity into the accumulation area to be propor-
tional to the waste’s amount in the denudation area, i.e. f, = By;, the waste’s
removal from the accumulation region being constant (A = const). Taking into
account the above mentioned (when f; = O), one comes to the following set of
expressions

(1.1-5) dy/dt = — .+ B) y1 + & ho k (Yama—y2)"”
yZ/dt = ﬁ y1—)\.

The special system’s point is as follows
(1.1-6) 31 = NB, 72 = yama{(0+B)? M/B? 2? h? k?]

When ¥, < O a bed slope cut will occur (the accumulation area disappears). This
will occur when A = (Yama)” Bo by k/(a+B).

To define the special point’s stability character (1.1-6), we linearize the system
(1.1-5) at the special point
(11-7) yi=E+yLy2=n+7,

Putting (1.1-7) into the system (1.1-5) and neglecting the members with order

higher than the first one, we obtain
o® ht K
2 A (a+ N

(1.1-8) d&dt=-(a+B)E-
dn/di=BE
The solution of the linear system (1.1-8) in the form

(11—9) E = C“ exp ()\.1t) + C12 exp ()\zt); n= C21 €xXp 0\1t) + C22 exXp ()\-Zt)

gives the following meanings for

10 b = OB (I Gl

From the last ratio the following conclusions on the special point’s stability charac-
ter can be drawn:

+ B)? h, k B)?
When (a 7 B) = @ +%))

we have a stable bound, which means the aperiodic waning tendency to the special
point.

a+ B k B)
Wheng—Tﬁl< %%))—
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we have the stability focus, which means a periodic waning tendency to the special
point.

The critical parameter value (waste removal rate from the accumulation area),
which divides the two stability regions, will equal

(1.1-11) A critical = 2 (g h, k B)*/(d + B)’

When A is larger or equal to this critical value, one obtains a stable bound. When A =
O (absence o? wash) one fails to construct a linearized system, but the special point’s
character y; = O, ¥, = yyma, 1s clear from the physical point of view, namely, the
waste amount brought into the accumulation area increases slowly to the maximum
tﬁlw Y2 = Yamax- Thus, the special point is the stable bound. The trajectories on
tEe phase plane can be qualitatively drawn by the isoclinal lines’ method (fig. 1). On
the

value

curve y; = %%Bl—{ ()z,zmx-—}zz)l/’ the tangents to the trajectory are of the vertical direc-
tion, while on the straight line y; = O they are of the horizontal one.
These two typical curves y, = %% (Yzmax—}’,)% and y; = O are called the isoclinal

lines. The first one separates the regions where the derivatives dy,/dy, have different
signs. When constructing the models (1.1-5) the wash area was assumed to increase
at the same time as the accumulation area dininishes. With large talus wash this
condition is not observed, a bench being formed at the initial talus.
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Fig. 1. A: Qualitative character of phase trajectories’ behaviour when wash at the basement of a slope is
absent.

B: Closed broken phase trajectory characterizing a cyclic development of abraision-landslide or a landfall-
abrasion slope.

(1:: Periodioc in time dynamics process of accumulative abrasion-landslide region or landfall-abrasion
slope.
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1.2 The dynamic models of abrasion slopes (undercut slopes)

Considering the development of the steep slope which is being undercut by wash at
its base, we start from the following obvious circumstances. First, the stronger the
wash the more quickly increases the slope’s steepness. Second, the steeper the slope,
the more waste 1s removed from the upper parts of the slope and the less is the base
being cut. Third, the greater the slope’s steepness, the more quickly it dinishes.
Fourth, the water flow’s energy cuts the slope base and reworks the wasted ac-
cumulating there. The slope’s (%g]velopment is also assumed to be going on continu-
ously without any large waste falls. As a result, we come to the following dynamic
system (TROFIMOV & MOSKOVKIN 1978):

| v
Ve d = VQI - [m/m,]), d > 1, Vpew + Veue d/= const, vy, = k @

where a is the average slope angle; v, is the undercutting intensity on the bedrock;
Vyew 18 intensity of reworking of the accumulated waste at the slope base (m); vy 1s
the intensity of waste inflow from the upper parts of the slope; ci, ¢, k, d are
positive constants. The second equation of Sue system is the balance ratio, the third
describes a cut; i.e. when m = o, the intensity of a cut is maximum and there is
some value M = m, when the waste cover prevents any cutting of the bedrock (vcy
= O). The constantz a indicates that the influence of a wave flow upon the slope
base is not equivalent (does not etqually act upon the bedrock and the accumulating
debris). Last, but not an equation of the system, is the condition of a continuous
intensity of influence on the slope base by a wave flow. The equations system
(1.2-1) reduces to the following dynamic system of second order:

(1.2-2) dm/dt = v, + %—d V(1 - [m/m,]) -V,

d vyp/dt = Sakv (1 - [m/m,]) = ¢; vy,

The special point of the initial equation system (1.2-1) is as follows:

(1.2—3) m = m, (C] k + C2) / (C1 k + Cy (d + 1)),
'5up. = VC1 k / (C] k + ¢ (d + 1)),
'5Cut. = VC2 / (C1 k + C2 (d + 1)),
'5rew. =V (Cl k + C2) / (C1 k + Cy (d + 1)),
& = VC1 / (C1 k + sz(d + 1))

While analysing the equation system (1.2-2) we shall need the first two coordinates
of the special point. The linearization of the system (1.2—4) gives
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(12—4) dE/dt =—%dn-c2§,
_ 1+d)V
dn/de=¢t- m, "

wherem =m + §, vy, = 9, + 1)

The roots of the characterizing equation of thisd system are as follows

deom+@d+ 1DV L V[e,md-V(1 + d)P—4ckm,Vd

2m,d 2 m,

When A = [¢;m,d — V(1 + d)J* - 4c;km, Vd = O there is the stable bound and when 4<0
there is the stable focus. Thus, in some time certain definite relationships are estab-
lished between veue, Vups Vpews @, m. We see that when the influencing factor V is
constant there are no unstable solutions at any parameter values of the system. Now

we introduce a lag effect into the system (1.2-1). The fact is that the slope’s cut does

not lead to an increase of steepness at once but in some time T: the slope’s steepness
increase does not lead to an increase of waste removal from the upper parts of the

slope at once either, but only in time 7. In this case we come from tEe system (1.2-1)

to the system with the lag arguments:

(1 .2—5) X],Z =

(1.2-6) d o (t)/dt = ¢; v (t=T) —c; @ (t)
d m(t)/dt = vy (1) + vy (t + T+ T) - vea(t),
Vrew (t) + Vo (1) d =V,
vy (t + 7)) = ka (),

M,
Veu (t) d=V (1 - [m(t)/Mo])

Applying the Laplace transformations to the system (1.2-6) a = A, m —> M, v, —
Ucues Vyp = Uup, Vrew —> ULew Where, for instance, A = Ia(t) exp(-st) dt, we come to
the following algebraic system of equations:

(1.2-7) -é, + As = ¢y exp (—sT) U — 2 A,
-m, + Ms = Uy — Uper + Uy, exp [s(t + T)],
Urew + Ucut d = V/S$
Uy exp (st) = k A,
U d = (V/S) - (V/m,) M,

where &, = a(O), m, = m(O). Solve this system relatively to M

Wol(c, + s) + m,s(c; +s)d + ke, V+ ka,S exp(s T)]

(1.2-8) M=s[dmos‘+(moczd+(1+d)V)S+(1+d)VC2+kC1V]

From this m(t) will be expressed as the inverse transformation of Laplace

(1.2-9)
c+ioo 1 d.
m(t) = 1 m, exp (st) [(c;, + ) V+ mys(c; +s)d+ ke;V+ka,Sexp (s T)ds
Znif s[dm, s+ (meca+ 1 +a)V)S+ (A +d) Ve, + ke V]

C—1%
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The dominator of the subintegral expression has the following zeroes:
(12410) ¢ _ ~nc _ (4 L(1+dV o (1+dW, ke Vs
Si= 05 = (3 + G5 ) +[(§ -]

g _(1+dV
27 2m,d

Ke V)" lid negati b
>\ ) the roots S,; are valid negative numbers.
O

When
Other-

wise we have complex roots with valid negative parts. Thus, unstable solutions
arise. The integral (1.2-9) is derived by the deductions’ sum at the point S, ;. Here
calculate only one deduction at the point $; = O, which gives the stable limit value
for m(t).

(211 Deduction s - o 9(t) = B m(r) = Z_AHS—H P ko 3

where @(t) is the subintegral expression in the formula (1.2-9). We see that the
expression (1.2-11) coincides with the stable value for m(t) of the previous model,
in which the lag factor was not being taking into account. The stability character of
the special points did not change either. Thus, when the influencing factor is con-
stant (V = const) no unstable solutions arise. Actually, in nature the instability of
the wave-cut slopes might happen if the influencing factor’s intensity (V) increases
sharply. We assumed that the slope development would take place according to an
uninterrupted model process. But if the slope angle (a) exceeds some critical value
(o> (?, there occur large landslides and this model does not apply any more. One
can deScribe slope development but the cyclic process of coastal abrasion and land-
slides (HurcHINSON 1975) or by abrasion and earthfall in the bounds of the model
(1.1-1). Now it is possible to show what such slopes will look like both on the phase
plane and during a time (fig. 1B, C). Let at the moment of time t = O an earthfall or
a landslide occur from the wave-cut slope. On the phase plane (fig. 1B) this corres-
ponds to the leap from the point O to the point A. Further, there occurs the removal
of the accumulated debris until it disappears completely. After the accumulated
mass has been removed, there occurs the cut of the bedrock slope, the point on the
phase plane being at O, i.e. during this period y, = O. If the slope’s stability is
suddenly interrupted, an earthfall or earthslide occurs, i.e. there occurs the leap
again from the point O to the point A (in fig. 1B) (this corresponds to the HUTCHIN-
soN sheme (1975), when the landslides of the same thickness recur periodically). On
the plane (t, y,) (fig. 1B) the direct line AB corresponds to the Process of removing
the accumulated landslide debris, the direct line BC corresponds to the cutting back
of the bedrock slope, and the direct line CD corresponds to an earthfall or a land-
slide. Then the process is periodical.

Let’s analyse now the simplified system (1.2-1) without taking into account the
change of the average inclination (a). Considey the slope to be reculinear, the wash’s
intensity being constant and equeiing V, = v & @, where v is the denudation velocity
along tﬁ’e normal to the slope, € is the slope’s lewngth, ¢ is the volumetric rock
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weight. The simplified system without the equation comprising a, will be written
as follows:

(1.2-12) dm/dt = v, + Vyp — Vrews
Ve d = V(1 = [m/m,]),
Ve d + Ve = V = const

The system (1.2-12) is reduced to the one ordinary differential equation

(1.2-13) %iﬂ = v+ ¥ (1 o —\r'nm

the solution of which at the initial condition m(O) = M has the form (TRoFIMOV &
Moskovkin 1980)

(1.2-14)
w0 =[ew+q) {1-o0 [ (5) )+ ()

e [ac (45) Tl (4

From the expression (1.2-14) it is seen that in the course of time there occurs some
definite amount of waste at the slope foot

(1.2-15) lim  m(t) = m, (v,f+ V)/V (1+d)
t—>®
When vy, = V, lim  m(t) = m,, the intensity of the bedrock cutting is equal to zero
t—>o0
(vewe = O) and the intensity of the waste removal rate is equal V (v, = V). Thus,
the waste’s amount which is removed from the slope in the same as that which is
transported to the slope foot from upslope (the first case by HutcHinsoN 1975).

When v,, < V, lim m(t) < m,, there occurs undercutting of the bedrock slope
t—>®
(the second case b HUTCHINSON).

When v,, > V, lim  m(t) > m,, waste is accumulated at the slope foot (the
t—>®
third case by HurcHinson).

The development and concretization of the models considered here, on the
basis of the change of the influencing factor V and of hypotheses derived from
practical experience, permits rational measures against abrasional cutting at the
slope foot. The criticaﬁ) value of the waste amount (m,) should be determined from
theoretical, natural and experimental studies. According to the limit expression
(1.2-15) the relaxation time equals infinity; this applies to the analysis of random
dynamic systems. In fact, however, due to the rapid exponential tendency towards a
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stable regime some finite time may be taken as the relaxation time, at which the
value m (t) is sufficiently close to m,. It may be derived by the solution of equation
(1.2-p) relative to a time. By changing the model’s parameters it is possible to vary
the relaxation time, 1. e. the time of the system’s transformation into the stable state.
While considering the space problem one should write a more general balance
equation of the waste instead of the second equation of the system (1.2-1).

(12_16) dm/dt = Vup + Vo V. + Vace. V. = Vrew. V. + Vour. Ve Vace VA = Vrew. Vi

where U v, Ve vi are the intensities of the waste subbly due to abrasional
undercutting of the bedrock slope by waves and longshore currents; vrew. v.» Vrew. v.£.
are the intensities of the waste removal being reworked by the waves and longshore
currents.

The problem is to enclose the equation (1.2-16) by the ratios which are analog-
ous to the model’s hypotheses (1.2-1). This 1s a theoretical aspect of the application
of equation (1.2-16). A practical predicting aspect of its applicastion may be as
follows. Let all the components of the equation (1.2-16) have been determined for
the given time moment (t = O) by experiment and let their algebraic sum be equal
9. Then, with the initial waste amount m(O) = M according to the equation
(1.2-16), find a waste amount for a small period ahead during which it may be
considered that o = const (SHIROKOV, MOSKOVKIN & TROFIMOV 1979).

(12-17)m @) =M+ ot

When © > O there occurs a waste (m) increase, when © < O a dedrease is taking
place.

2 Dynamic models of slope systems
2.1 The dynamic model of a talus slope

A well-known concepts of LEHMANN (1933) is fruitful from the point of construct-
ing a dynamic model of the talus waste accumulation at the base of a bedrock slope.
Actually, with the suggestions of this concept one may write down the following
dynamic system:

(2.1-1) dw (t)/de =k v 1(t)
d 1 (t)/dt = a (w(t) — w,)

where I(t) is the lenght of a bare bedrock slope that produces waste by weathering;
w(t) is the talus waste volume at the random moment of time t; w is the maximum
talus waste volume, corresponding to the cover of the entire bedrock slope by the
talus (1 = O); v is the bedrock slope’s recession velocity in a direction normal to ik; k
is the loosening coefficient which characterizes the waste’s volume increase in com-
parison with the same waste’s mass: a = const. The first equation of the system
(2.1-1) is the balance ratio, postulasting that the amount of the waste removed from
the bare bedrock slope equals the amount that is accumulated on the talus. The
second equation states that the rate of shortening in the length of the bare bedrock
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slope decreases with the talus volume’s increase (w, > w). It fulfills a feedback in the
system bedrock slope-talus.

Having divided the first equation into the second one solved the obtained
ordinary differential equations, we will have

(21-2) w=w, - (vk/a)”
While solving it was assumed that w = w, when | = O. The coefficient a we find

2
from the condition w = O when | = |, (|, is the initial slope length): a = %l“—

o

Ptt)ltti_ng the expression (2.1-2) into one of the system’s equations (2.1-1), wefinally
obtain

(2.1-3) w(t) = w, [1 - exp (_ kol t)]

Wo

Thus, the talus waste’s accumulation grows to Wo by the exponential law. From the
ratios (2.1-3) it is IE:ossible to determine the time of a full cycle of a talus slope’s
development and the age of it.

2.2 The dynamic model of gulling

Assuming a slope to be developing while covered by a talus type (south arid zone)
we obtain the waste’s prime balance equation at a random point of a symmetrical
gully in the form of

(2.2-1) dw(t)/dt = 2k, v I(t) - A,

where w(t) is the volume of waste, at the bottom of a gully per unit of its bed
length, m?; kp is the loosening coefficient; v is the norma%rate of the gully slope’s
recession, m/yr; is the length of the retreaging segment of the gully slope, m; A-is the
rate of gully cleaning by a bed process, m7yr.

This equation is close to the first equation of the system (1.2-1). To enclose the
equation (1.2-1) and construct the dynamic system of second order one should

know the way of the dependenceg—l = f(w) when A = const. Consider the geo-

morphological aspect of the equation (2.2-1).

It should be noted that a fall process goes more gradually with respect to time
than a bed one. At the initial stage of a gully growth when it has a triangular cross
profile form and a small length of a denudation segment I(t), bed processes proceed
with time to clean a gully from the removed upslope’s waste (A > 2 k, v K(t). There is
a critical waste volume, which cannot be removed completely by one or several
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. . . i Werit
intensive (for the given conditions) floods Wi = 2k, L v hence i = zlfr;, .
P

Afterwards the gully has a tendency of ceasing its growth in depth; a process of
progressive waste accumulation and widening of the bottom begins. The growing
taluses at the gully’s slopes reduce their correlative denudation segments, which
deminishes the rate of waste supply to the gully; finally the taluses usually cover the
steep slopes of the gullies completely. This 1s rather favoured by the cleaning veloci-
ty (A) in the course of time due to a decrease of the catchment region at the top of the
gully. . . '

The processes of accumulation and waste removal into gullies of the arid zone
are of a cyclic character. The process of more or less continuous falling and accumu-
lation of talus waste into the gully bed is stopped by rapid cleaning when a mic-
romudflow occurs. As a result the two components of the balance equation (2.2-1)
have a different time lapse and are mutually exclusive. In fact, when the process of a
contiuous falling and accumulation of waste is going on in the bed, the velocity of
its cleaning may be considered to be zero (A = O); when there occurs an intensive
and momentary flood (A # O) the first number of the equation (2.2-1) may be
neglected.

The estimate of the slope component is simpler in the equation (2.2-1). For this
the data for average rates of denudation of %ul ied talus slopes are needed. With a
concrete estimate of the slope component of the equation (2.2-1) appply it to the
whole length of the gully (L), then the waste accumulation rate will be expressed by
the value 2 k, vl L, m*/yr. _

New guﬁies that are developed in the upper cretaceous marls of the right sloEe
of the Gipsy gully (near the town of Bakhchesarai) and can be cleaned, have the
following parameters (KLYUKIN & MoskovkIN 1979): Coef kp = 1,3; v = 5,4 mm/
yr;1=1-3m, L = 50-200m; they therefore have the following rate interval of waste
accumulation: 0,7-8,4m>/yr. With the average frequency of micromudflows in this
region, once per five years (KLYUKIN, RUDNITZKY, TOLSTUKH, KHARLAMOVA 1979),
one obtains a waste accumulation volume at the interval 3-40m’. This volume of
waste accumulation in gullies corresponds to the volume of a possible single trans-
port event by micromudflow for the considered refion. ‘

The above considered peculiarities of gully development are typical for the
gullies developed in stable rocks, which corresponds to the third type of the 510{26
process, i.e. tglling, in the gullies of the southern arid zone according to the works
of Kosov Ye. &« LyusiMov B. P. (1979).

2.3 Dynamic models based on the equilibrium concept of F. AHNERT

Let us turn to the construction of dynamic slope models, namely, to the AHNERT
equilibrium model as the basis (1967) and his comprehensive model of slope de-
velopment (1973). This leads us to the dynamic model of slope development for the
weathered waste’s equilibrium at a definite point of the slope. According to
AHNERT’s equlibirium concept the change of the weathered waste at a point is
fulfilled due to the waste which comes from the uplying points, that which is
removed from this point and that which comes by weathering at this point. Further,
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the balance equations of the waste at the definite point led to the construction of the
comprehensive model of the slope’s development (AHNERT 1973). To realize this the
program COSLOP-2 in the FORTRAN language was constructed. It consists of
the main program, which serves as the subprograms’ selection and references to
them, recalculation of the slope’s parameters, data print-out and 17 subprograms,
which are divided into the following groups: three subroutines to set the initial slope
profile; one for determining of weathering with an account of geological structure
(two subroutines). The calculation of weathering can be carried out by

uasimechanical, chemical and combined models; six programs for calculating the
slope’s baselevel change (stream incision) at aconstant, slowing and increasing rate;
three subroutines of the slope processes: viscous-plastic waste flow according to
SoucHEz’s formula (1964) R = v (sin a - haﬁ, a simple wash by the formulaR = q

sin o and compound wash by the ZinGG formula (1940) R = k sin (1 + d™), where,
as distinct from a simple one, the wash’s intensity increase is taken into account
down the slope (d); two subroutines, modelling a landslide mechanism of the left
and right part of the slope respectively. In the above formulas h is the thickness of
the waste’s layer; v, d, q, k, m = const, m < 1. Modelling by a computer of the
Univac-1108 type has shown that the development of the initially rectilinear slope
under the influence of (1) viscousplastic flow leads to a convex profile; of (2) com-
pound wash leads to a concave profile; of (3) the combination of the first two
processes — to a convex-concave profile; of (4) a viscous plastic flow, with the
account of a constant velocity of the slope’s denudation basis lowering leads to a
convex stable profile; of (5) a compound wash, with the account of a constant
velocity of the slope’s denudation - to a concave stable profile. The further develop-
ment of the comprehensive model has led to the construction of its space analogue
(AHNERT 1976) and the analysis of the slope’s profile sensitiveness to slope parame-
ter changes (MooN 1975). Our investigations are carried out in the way of the
construction and solution of the closed equations describing the waste balance at the
definite point of a slope (TROFIMOV & MOSKOVKIN 1979). The waste balance equa-
tion at this point is assumed as the basis

(2.3—1) Yi— Y2 + Yy = h - ho
where y, is the waste amount coming from the higher-lying points; h, is the initial
thickness of the waeathered waste, Kl (O) being equal y, (O) =y, (O) = O, h (O) =

h. To describe the process of weathering take the G. CHaNG hypothesis (1958) on
the exponential decrease of the weathering velocity with the depth

(2.3-2) dys/dt = Bexp (- 8 h) (AHNERT 1976)

For the summarized wash’s rate take the ratio which is analogous to the R. SoucHez
formula (1964) ‘

(2.3-3) d(y, - y,)/dt = Asina = Ap

where A = const, sina = i is the slope’s indication in the considered point of the

7 Zeitschrift fiir Geomorphologie N.F. Bd. 28, Heft 1
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slope. Thus, one has the closed equations’ system (2.3-1 + 2.3-3). By differentiat-
ing the equation (2.3-1) in time with the account of (2.3-3) one obtains

(2.3-4) - A; + (dyy/dt) = dh/dt

By differentiating the equation (2.3-2) in time, having expressed dh/dt from it and
putting it into the equation (2.3—4) we come to the following differential equation:

d? dy] _
(235 J8+B (%)Z-Aiﬁa{i_ o
Having solved it relatively to dys/dt, we obtain
(2.3-6) dys/dt = A;C exp (B Ait)/[1 + C exp (BAit)]

From the initial condition dys/dt,| = B exp (- B h,), we find a constant of

integration

t=0

(2.3-7) C = B exp(-B ho)/[A; — B exp(-B h,)]
Putting (2.3-6) into (2.3-2) we obtain h

23-8 1 A;Cexp (B A1
( ) h:--Fln[B(1+(e:x£(p(l3Ait))

The maximum values for dy;/dt and h are equal to:

(2.3-9) lim
t—> 00

(dy;/dt) = Ai

1“_‘;00 h= ——E;—ln (-‘E‘—) = f = O, (when A; < B)
Thus, when the summarized wash (Ai) is less or equal to the maximum weathering
intensity (B = max {B exp (- Bh)}) the development goes in the way of reaching the
dynamic equilibrium y; — y, + y3 = h - h, = const. In the other case (A; > B) the
weathered(}ayer (h < o) does not exist, which corresponds to a bare bedrock slope.
F. AuNERT (1967) and A. V. PazpNyakov (1976) have pointed out the dynamic
equilibrium to be stablized in the process of a slope’s development between weath-
ering and denudation.

If instead of the hypothesis (2.3-2) it is assumed that the rate of decreases
linearly with the depth

(2.3-10) dys/dt = k (huex - h)
then solving the equation system (2.3-1; 2.3-3; 2.3-10), we obtain

(2.3-11) dyy/dt = A; — [A; + k (ho — haa)] exp (- K1)
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from where lim (dy,/dt) = A;; bearing in mind (2.3-10) we obtain
(2.3-12) lim By — 2 = R,

t—>®
From the expression (2.3-12) follows that the less the slope’s inclination the more
thickness of the waste layer is established (this is true for the previous model as well,
see formula (2.3-9)).

When A; > kh,,,, a weathered layer does not exist.

When A; < kh,,,, the dynamic equilibrium is established y; -y, + ys; = h-h, =
const. as well as in the previous mogel.

Considering the previous models we can draw the following conclusion: if the
summarized wash does not exceed the maximum rate of weathering (which is
obtained when h = 0) the slope development goes in the way of obtaining the
dynamic equlibrium at every point of the wash’s region, in the transit region the
ratio h = const being always fulfilled. At the accumulation region the thickness h
increases all the time. When no shift of the waste occurs, then the maximum
equilibrium will be obtained (limh = const).

t—>0 . . .
Now analyse the case when the third system’s equation (2.3-1-2.3-3) is written
for the viscous waste flow (AHNERT 1977)

(2.3-13) d (y, - y1)/dt = R = Ak’ sina
where r = const. In this case the equations’ system is reduced to one: —
(2.3-14) Ah" sina + Bexp (- f h) = dh/dt

For the stationary system’s state, the solution of the process equation (when dh/dt =
O) is:

(2.3-15) — Ah" sina + Bexp (- h) = O

When r > O the equation (2.3-15) has a single solution h = h. Let us show this
solution to be stable. Let r = 1, then putting h in the form of h = h + h’, where h’
is the small value and putting it into the equation (2.3-14), ignoring the terms of
which are higher than the infinitesimals of second order, we obtain

(2.3-16) b’ = C exp [-(Asina + B Bexp (- B h))]
Because Asina + B Bexp (- B h) > O, then limh’ = O, which was to be proved.
t—>
If the initial thickness value ho is close to h, we get the following solution for h:

(2.3-17) h = (h~h) exp [(A sina + B Bexp (- h)t] + h

When r = 3 (the analogue of a viscous flow by SoucHEz’s formula) we obtain
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by the analogous way
(2.3-18) h = (h,-h) exp [-(3h? Asina + B Bexp (- Bh))t] + h

The analogous result (stable solution) one gets as well with a random r > O.
Thus, when r > O the dynamic equilibrium is obtained at every point, i.e. the
weathered thickness’s value tends to the constant value h.

We obtain analogous results when R (wash removal rate) is set according with
the viscous-plastic flow model of AHNERT (1977): R = x (h sino — ;) and when the
weathering rate is set by the combined scheme (physical and chemical weathering),
where the chemical rate is set by a continuous piece-like smooth function (AHNERT
1977).

(2.3—19)%?=W=W0 (1 +k01%—1}:‘22 )7hshc

¥ = = w, k, exp [~ (h-hJ], h > b

Note, unlike AHNERT’s formula, we introduced the coefficient into the formula
for physical weathering rate (2.3-2). This coefficient § characterizes the weathering
rate’s decrease with depth.

In the case, when the weathering rate is set by the formula (2.3-19) or by the
combined scheme with the maximum function w different from w,, w > w,, there
exist two possible stable states. For instance, stability will take place when r = @)
and w, < Asina < w, ko, ko, > 1, for the straight line R = ASina in this case will
cross the schem’s function (2.3-19) at two points hy, h,, which will be the stationary
states of the equation — R + w = dh/dt. The tendency to this or the other stable state
will depend on the initial condition h,. As O <h; < h. and h, > h,, then when O <

ho < hc’ lim h = h,, while ho > hc’ lim h = 1'—12

t—>
t—>©

At present mathematical methods for the stability analysis of dynamic systems
with a small random perturbation have been worked out (VENTSELE & FRAIDLIN
1970). Here several trajectories that come out from a stable state beyond the region’s
boundary are estimated, and the character of this comes out as well. An application
of this method to the analysis of the stability of ecosystems is beimg worked out b
V. A. SVETLOsANOV (1976). It is applicable to the analysis of slope systems as weﬂ
(TROEIMOV & MoskovkIN 1980b). Introduce into the right part o the equation
(2.3-14) the small random perturbations € w,, where € is the small parameter, w, is
the random VINEROV’s process. Estimate the time of the system’s change from the
stable state h = h to the ﬁoundary state h = o, which corresponds to the degradation
time of the initial state and its transition into an other system. For instance, a gentle
slope, which has the weathered waste’s layer (h % o) under the action of the pertur-
bations’ series is likely to transfer into an other slope type — the steep bedroc slope
(h = o), the functioning of which will go in an other way. This is derived Ey
(VENTSELE & FRAIDLIN 1970; SVETLOSANOV 1976)
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(2.3-20) M, 1¢ ~ exp [4 U(O)/2¢2]

where U (h) is the potential of the right part of the equation (2.3-14), which is
df)rnfed with the help of the integration of it by h. The conformity with our case we
obtain:

(2.3-21)
M, v ~exp { [(A

-

hr
B

sina-1) [~ (A%’Eir};la/B) ]+ Wt sina | / ¢}

We estimate the numerator of this expression when h — o. After a number of
h—O r -
the slope’s system is in the stable state with a minimum depth of the weathered
layer, a small lapse of time is needed to transform it in the state h = o (system’s
degradation state). When h —w the numerator of the expression (2.3-21) goes to
infinity as well, the system with the great h being stable to the small random
perturbations. In fact, with a large thickness of the weathered waste’s layer it is
unlikely to disappear quickly (the transform into the state h = o).

The other analysis’s aspect is likely to be bound up with introducing the con-
trolling factors into the dynamic systems. In this case tﬁere appears a possibility to
solve the problems of optimum control by slope’s systems (TRoFIMOV & MoskOV-
KIN 1978, 1980). Different anti-erosion, anti-abrasion and other measures — factores
of man’s activity — can serve as the control factors.

In conclusion, it should be said that the dynamic models allow to investigate
the stationary-dynamic regimes of the slope’s system for stability, to solve optimum
control problems, to take into account stochastic factors and lagging factors and to
determine the relaxation time in the slope’s systems as well. The analysis of different
concrete systems has shown the systems’ development goes in tKe direction of
establishing the dynamic equilibrium due to the presence of negative feedbacks, the
influencing factor’s intensity being constant. ,

simplifications, we finally obtain the following limit O, i.e. when
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