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AHHOTaUusA. B uMnnHApUYeckoii 06/1acTU eBKAMAOBA NMPOCTPAHCTBA A1 MHOTOMEpPHOro ypaBHeHusi Jiinepa -
[Oapby — HyaccoHa paccmaTpuMBaloTcs CreKTpanbHble 3agaun Aupuxsie u MyaHkape. PelleHue uvuieTcs B Buge
pasnoXeHWsi HO MHOTOMepHbIM CiepuUeckUM (PYHKLUMUSAM. JoKasaHbl TeopeMbl CyLLecTBOBAHUS U eAVHCTBEHHO-
CTW K/1acCUYecKoro pelueHus. FosyyeHbl YCN0BUS 0AHO3HAYHOW pa3peLunuMocT MOCTaB/IeHHbIX 3ajay, KoTopble
CYLLLECTBEHHO 3aBUCSIT OT BbICOTbl LUANHAPA.

KntouyeBble crnoBa: KpuUTepwuii, cnekTpasbHble 3afayv, MHOFOMEpHOe ypaBHeHWe, UuunnHapuyeckas ob6nacTb,
dyHKUMA Beccens.

AOnsa untupoBaHus: Angawes C. A. 2020. KpuTepuii 04HO3HAYHOW pa3pelmMocTy CleKTpasibHbIX 3agady Au-
puxne n MNyaHkape ANsT MHOTOMEPHOro ypaBHeHusa diinepa - Oapby - lMyaccoHa. MNpuknagHaa mMatematuka &
dusnka. 52(2): 139-145. DOI 10.18413/2687-0959-2020-52-2-139-145.

1. Introduction Two-dimensional spectral problems for hyperbolic equations are extensively studied
(see for example [Kalmenov, 1993; Moiseev, 1988; Sabito, 2000; He K. Ch. 2000], and their multivariate
analogues are studied in [Aldashev, 2003; Aldashev, 2005; Aldashev, 2006; Aldashev, 2014]. This is because
three or more independent variables have difficulties of a fundamental nature. There is a highly attractive
and convenient method of singular integral equations. Applied for two-dimensional problems, it cannot be
used in virtue of absence of complete theory of multidimensional singular integral equations. The theory of
multidimensional spherical functions, by contrast, is quite fully studied. These functions have important
applications in mathematical physics, in theoretical physics, and in the theory of multidimensional singular
integral equations. The author proposes that in solving the spectral problems of Dirichle and Poincare
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for the multidimensional Euler-Darbu-Poisson equation, the decomposition by spherical functions should
be used.

2. Statement of the problem and result. Let (13— be the cylindrical region of the Euclidean
space F,,11 points (21, ..., Zm, t), bounded by the cylinder I' = {(z,¢) : |2| = 1}, by the planes t = 8 > 0
and t = 0, of where |z| is a the length of the vector = (z1,...,2,,,). The parts of these surfaces that
form the boundary Qg of the domain €13, are denoted by I'g, Sg, So respectively. In the region Qg we
consider the multidimensional Euler-Darboux-Poisson equation with the spectral real parameter -~y

Agu — uy — %Ut = 7u, (1)

where A, is the Laplacian operator with respect to the variables x4, ..., z,,, m > 2, a— and a is a real
number.

By uq(z,t) we denote the solution of equation (1) for given a.

As multidimensional Dirichlet and Poincare problems, we consider the following problems.

Problem 1. Find a solution to equation (1) in the region Qg from the class C(Qg \ So) N C?(Qp),
satisfying the boundary conditions

Ua 30:07 ol 0, ualg =0, a <1; (2)

Uy

E =Y, Uy *07 uo&‘s *0705: ’ (3)
1 luy)| =0, wa| =0, us|., =0, a>1. 4
" u )S ual u \Sﬂ o (4)

Problem 2. Find a solution to equation (1) in a domain Qg from the class C(Qg \ Sp) N C?(Qp),
satisfying the boundary conditions

Jug,,

Ta. :O [o% :07 @ :07 207 5

ot s, ru I's “ ‘Sﬂ @ (5)
}E}%t (ua_ua,l):Q Ugy F5:O7 ua‘55:07a<07 (6)

where uq 1(x,t) is the solution of the Cauchy problem for equation (1) with data ua 1(z,0) = 7(z),
%u%l(x?O) = 0.

Further, it is convenient for us to move from the Cartesian coordinates z1,...,z,,,t to spherical
01, . 0, 171577~>0 0<0, <2m,0<b;,<m i=23 ..m—1.

Let { } be a system of linearly independent spherlcal functions of order n, 1 < k < k,,
(m — 2)'n'kn =n+m-3N2n+m—2), 0 =(01,...,0m_1).

Then the following result is valid.

Theorem. 1) If v < —p? n: then for all a problems 1 and 2 have only zero solutions.

2) If a <0 ora>2, then for v > —pu? n problem 1 has only a trivial solution, if and only if

sinfBy/y+pi, #0,s=1,2,.... (7)

3 For0<a<2andy> —uin problem 1 has only a zero solution if and only if, the condition

cos By /vy +pl, £0, s =1,2,.... (8)

4) The solution of Problem 2 for v > —uzm for any « is only trivial if and only if relation (8) holds,
where pis n are positive zeros of the Bessel functions of the first kind J, _ (m—2) (2).
2

We note that for oo = 0 this theorem was obtained in [Aldashev,2010; Aldashev, 2011].

3. Information of tasks 1 and 2 to two-dimensional problems. In spherical coordinates, the

equation (1) has the form
m—1 1 5 @ (9)
Uy — 50U — Uy — —Ur = VU,
) = v

Urr +
T

m- o (. D . . .
o= - Z smm i 1'9 809 < Sin J 1%>79117 gj:(81no91...smc9j,1)27j > 1.

It is well known [Mikhlin, 1962], that the spectrum of the operator § consists of eigenvalues A, =
n(n+m— —2), n=0,1, ..., each of which corresponds to kn orthonormal eigenfunctions Y,ﬁm(ﬁ).
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Since the desired solutions to problems 1 and 2 belong to the class C?(€g), they can be sought in the
form of a series

un(r,0,1) = i ﬂ§7n(r7t)Y,ﬁm(0)7 (10)

where @l , (r,t) are functions to be determined.
Substltutmg (10) into (9), using the orthogonality of the spherical functions Y,ﬁm(e) [Mikhlin, 1962],
we obtain

—1 « A
&k -k _k _k _k n _k ko _ _
Laua,n - uoz,n'r"r’ + r uoz,n'r’ - uoz,ntt - ?ua,nt - r_guoz,n ’Yuoz mo 07 k= 17 kn7 n—= 07 17 cey
<1fm> _ .
which, using the substitution @, (r,t) =+ 2 al, (r,t) reduces to the equation
ko _ .k k & g n_k ko _ _
Laua,n = Ugmrr — Ugntt — ?ua,nt + r_guoz,n YUy — 07 k= 17 kn7 n = 07 17 a3 (1104)

Further, from the boundary conditions (2)—(6) for the functions u” n(7:t) by virtue of (9), we respectively
have

ulgz,n(r70) - 07 ulgz,n(17t) - 07 u];,n(r7 ﬁ) - 07 a < 17 k= 17kn7 n = 07 17 ceey (12)
uk
Tr | = 0w (L) =0, 4l (B =0, a =1, k=T ky, n=0,1,.., (13)
(ta ! lgzn) :07 ulgzn(17t):07 uin(nﬁ):()?a>17k:17kn7n:0717...7 (14)
t=0 ’ ’

ok -

’ =0, u (1 t) = (r B8)=0,a>0,k=1,k,,n=0,1,.., (15)
at  li=0

lim ¢t*(u), ,, —ul) ) =0, ugn(u) =0, ub, (r,8)=0,a<0,k=T1k,,n=01,....  (16)

t—0

In this way, problems 1 and 2 are reduced to two-dimensional spectral Dirichlet and Poincare problems
for equation (11,). The solution to these problems will be studied in sections 4 and 5.
Along with equation (11,) we consider the equation

)\
k k uk aF —0

Loulg,n = uO,nr'r’ uO nitt + O ’YuO,n ’ (110)
which, using the change of variables { = =, 5 = 5+
A
Muknzukn +7nukn:7ﬂkn. 17
0, 0,n&n (5 i 77)2 0, 0, ( )
Solution of the Cauchy problem for (17) with data’
ouk  ouk 1
%Aa@ﬁ@xﬁag— o ‘snlﬁ@msssi
has the form {Aldashev, 1991].
k L & L& 13
U, n (57 77) - iTn (U)R(Th 7 57 77) + iTn (g)R(g g 2 f 517 517 57 )
7
(18)

(51) R(&1,m5€,m) ey =m 1+

’

n
Sl (&, m)R(&, ;€ m)dérd,
0

M‘H\u’h

where R(1,71;€,n) = Pu[(517771()5(16;:1);(2&5:)%1”1)] = P,(z) is the Riemann function for the equation
(m 3

Muf,, = 0 [Copson, 1958, P,(z) is the Legendre function, p = n +

1 7] 7]
W‘Ezn - ﬁ (8_5 B 3_77> L:n
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4. Functional relationship between solutions of the Cauchy problem for equations (11,)
and (11g). First, we present some properties of the operator L, that are necessary for further studies.
1°. If is & uo— solution of the equation L,u = 0, then the function

o g, (19)

U2 o =

is a solution of the equation Ly ,u = 0.
20 If u, is a solution of the equation L,u = 0, then the function

1 duy,,
10U 20
I ot Uat-2 (20)
is a solution of the equation L,jou = 0.
3°. The operator L, has the property
Lou, = tlfo‘Lg,a(to‘flua). (21)

These properties are established in the same way as they were proved ([Weinstein, 1954}) for the
equation
Azu — Ut — %Ut =0. (22)

From equality (19) we have us_o_2, = t*72P"lu, 9, to which, applying formula (20) p times, and
then (19}, we obtain

1ONY oo
i = (15) € i) (23)

Let p > 0, g > 0 be the smallest integers satisfying the inequalities a+2p > m—1, 2—a+2¢ > m—1.
Proposition 1. If ué:i(nt) is a solution to the Cauchy problem for equation (11p) ) satisfying the
condition

Wb 20r,0) = 0, Dub2(r,0) = k), (21)
then function
1
2 nt) oot ® [0 - €)1 g = o (<5) Diaulino), (25)

0

for e < 0 it will be a solution of the equation (11,), satisfying the condition

0
k,2 o r,2 k
uys (r,0) =0, hn%t g Lo =, (r). (26)

If 0 < @ < 1, then the function

19\* ! .
up (7, t) = Y2kt (?E) {t1k+2qfu§:71l(r7 ¢t)(1 _52)612615} =

v [ubnon) (@7)
= '727oz+2q2q F(ql Y + 1)D02t2 ﬁ

is a solution of the equation (11,) with the initial data (26), where /7I'(%)y, = 2['(252), I'(2) is the

gamma function, D§; is the Riemann-Liouville operator {Nakhushev, 2006], and v, n( t) is a solution of
equation (11g) with the initial conditions

k
) 2 ghm0) =0, (29)

ko1
gy (r,0) = 1—a)B3—a)..(2¢g+1—a) Ot

Proposition 2. If u’g;}L(m) is a solution to the Cauchy problem for equation (11g) satisfying the
condition

ubd(r,0) = 7). rubih(r,0) = 0, (25)

then function

7

L(r,t) /u (r, &) 5)%*1dsz2*vaF(2)t1 Dyt [7
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for o > 0 is a solution of equation (11,), satisfying condition (28).
Proposition 3. If u’g:,ll(r7 t) is a solution to the Cauchy problem for equation (11¢) satisfying condition
(28), then the function

1
wbhrt) = [ubhnen( &) infi1 - €))dg (30)
0
is a solution to the problem for the equation Llulm = 0 with initial data
k1
il =), (31)

The evidence for the above statements is established similarly how they were proved for equation (22)
and multidimensional wave equations Agu — uy = 0 [Aldashev, 1991; Aldashev,1976; Tersenov, 1973;
Tersenov, 1982}.

We give some corollaries from Propositions 2, 3. We first consider the case a <0, a £ —(2r+ 1), r =
0,1,....If ulg i(r t) is the solution of the Cauchy problem for (11p) with data

k
k1 7o () ﬁ k1 _
Ug n(r O) (a—l)...(a+2p—1)7 8tu0,n(r70) *07 (32)

then it follows from statement 2 that
1
W (1) = sy [ b E00 = €T g
0

is a solution of the equation L, opu = 0, satisfying the initial condition(32).
Then from relations (23) and (19) it follows that the function

10\" g [un(rt)
ulod (r,t) =t (——) (12 Yl ) = s 2P T(S 4 P2 D ] [ o (33)
is a solution to equation (11,) and satisfies condition (28).
Now let & = —(2r+1). If ué:i(n t) is a solution to the Cauchy problem for (11p) with data (28), then

it is easy to obtain from (19), (23) and from Proposition 3 that

k1 _ 4 2(r+1) 10 oy k,1 2y 1 9
Wy 1y (1) = 0D {2 ugin(r €01 =€) 73 In(t(1 — €7))d¢ (34)
0

is a solution to the Cauchy problem for (11,,), satisfying the condition (28).
Using {Nakhushev, 2000} the relation (34) can be written as
')
NZ3

—Int. (35)

L (= Spernpred [t O] Ly
—@r+1)\ Y TG 0t2 : 5 -

5. Proof of the theorem for problem 1. 1) Case o < 1. Given formulas (25) and (27), we reduce
problem (11,), (12) to the Dirichlet problem for (11y) with data

ug? (r,0) =0, ul? (1,6) =0, u}(r, 8) = 0, k =1,kn, n=0,1, ., (36)

for @ < 0 and to the Poincare problem for equation (11g), with the condition

d
Euii(r 0) =0, uys(1,8) =0, ul? (r, ) =0, k=1, kn, n=0,1, .. (37)
for 0 < a < 1.

The following are shown in [9,10]: 1) If v < —p? ,, then problems (115), (36) and (11p), (37) have only
zero solutions; 2)For v > —pu? 2 problem (11p), (36) has ounly a trivial solution if and only if the condition
(7) is satisfied; 3)For v > —u?2,, problem (11p), (37) has only a zero solution if and only if relation (8)
holds.

Further, using Statements 1-3, we establish similar results for the problem (11,), (12).
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2) Case oo = 1. The solution to problem (11,), (13)will be sought in the form

uf (r,t) = ulh (r,t) + u]f:i(r7t)7 (38)

1n

E,1
Ui n
In

where u]f:,ll(n t) is solution of the equation (11;), with data - 0, and ulffl(r?t) is solution of the

Poincare problem for (11;) with the condition

0 1o

5740 (r,0) =0, w2 (1,t) = —uph (1,8), ufn(r, B) = —ul (r, B), k=T, kp, n=0,1,....  (39)

n 1n

By virtue of (30), (18) of u’f:,ll(n t) = 0. Further, using formula (29), we reduce problem (114), (39) to
the Poincare problem (11g), (37).

Using formulas (21}, (19) problem (11,), (14) is reduced to the case o < 1. studied.

Thus, it follows from (10) that Theorem 1 is valid for Problem 1.

6. Proof of Theorem 1 for Problem 2. Now we consider Problem 2, which is reduced to problems
(11,), (18)and (11,), (16).

If o > 0, then it follows from (29) that problem (11,), (15) reduces to the Poincare problem for
equation (11p) with data(37).

For oo < 0, o # —(2r +1),r =0,1,... we will look for a solution to problem (11,), (16) in the form
(38), where uf? (r, ) is a solution to the Cauchy problem for (11,) with the condition

ul? (r,0) =0, lim to‘%uiﬁl(nt) =0, (40)
and ul7 (r,t) is solution of the Poincare problem for (11,) with condition (39).

Problem (11,,), (40) by virtue of formula (25) reduces to the homogeneous Cauchy problem for (11¢)
with data ué:i(n 0) =0, %ué:i(n t) = 0, which has the trivial solution that follows from (18).

Problem (11,,), (39) by virtue of (33) is reduced to Poincare problem (11p), (37).

Further, let @ = —(2r + 1). We look for a solution to problem (11,), (16) in the form (38), where
uf? (r,t) is the solution to the Cauchy problem (11,), (40), and w% ] (r,t) is solution to the Poincare
problem for (11,) with the condition (39).

Since uf? (r,t) = 0, as shown earlier, by virtue of (35) problem (11,), (39) reduces to the Poincare
problem (11¢), (37).

Therefore, the validity of theorem 1 follows from (10) and it is proved for problem 2.
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