#### MODEL FOR ION-ASSISTED FILM GROWTH

A.S. Bakai, S.N. Sleptsov, A.l. Zhukov NSC "KhFTI

A new model of growing film densification is proposed. The model takes into account the diffusional mobility of point defects and interaction between them. The film density as a function of ion flux, ion energy and substrate temperature is investigated.

## 1. Introduction

Vapor-deposited thin films have a lower density than the corresponding bulk material. This is caused by a low mobility of surface atoms thus vacancies and their complexes are formed [1]. It is possible to increase the density of vapor-deposited films by self or gas ions bombardment during growth [2]. Muller has proposed a model for ion-assisted film densification [3]. This model explains the experimentally observed increase in the film density for the low ion fluxes case, but it leads to unreasonable results for large ion fluxes: the film density exceeds the one of the bulk material. This discrepancy is mainly due to by neglecting of point defects mobility.

We present a model, where the diffusion of point defects is taken into account. Satisfactory description of experimental data is obtained in the frame of our model.

### 2. Diffusion model of densification

Let us denote the fluxes of condensing atoms and gas ions as  $J_n$  and  $J_g$  respectively and the film growth rate as V. Ions penetrate into the film and produce interstitials and vacancies. In moving coordinate system, connected with surface (x=0), the concentrations of interstitials  $C_i$ , vacancies  $C_v$ , implanted gas atoms  $C_g$  and gas-vacancy complexes  $C_c$  can be described by the following diffusion equations:

$$\frac{d}{dx}\left(D_i\frac{d}{dx}C_i\right) - V\frac{d}{dx}C_i - \alpha_{i\nu}C_iC_{\nu} - \alpha_{i\nu}C_iC_{\nu} + Q_i(x) = 0,$$
(1)

$$\frac{d}{dx}\left(D_{\nu}\frac{d}{dx}C_{\nu}\right) - V\frac{d}{dx}C_{\nu} - \alpha_{i\nu}C_{\nu}C_{i} - \alpha_{g\nu}C_{\nu}C_{g} + \omega_{c}C_{c} + Q_{\nu}(x) = 0, \qquad (2)$$

$$\frac{d}{d\mathbf{r}} \left( D_g \frac{d}{d\mathbf{r}} C_g \right) - V \frac{d}{d\mathbf{r}} C_g - \alpha_{gv} C_g C_v + \alpha_{ic} C_i C_c + \omega_c C_c + Q_g(\mathbf{r}) = 0, \tag{3}$$

$$\frac{d}{dx}\left(D_c \frac{d}{dx}C_c\right) - V \frac{d}{dx}C_c - \alpha_{ic}C_cC_i + \alpha_{gv}C_gC_v - \omega_cC_c = 0.$$
(4)

Here,  $D_{i,v,g,c}$  are the diffusion coefficients of interstitials, vacancies, gas atoms and complexes respectively,  $D_{\alpha} = D_{0\alpha} \exp \left(-E_{\alpha}^{m}/kT\right)$ ,  $E_{\alpha}^{m}$  are the migration energies,  $\alpha = i, v, g, c$ ; T is the substrate temperature,  $\alpha_{iv,gv,ic}$  and  $\omega_{c}$  are the constant of reactions in the following processes:

recombination of interstitials and vacancies

$$\alpha_{iv}$$
:  $i + v = 0$ ,

formation of gas + vacancy complexes

$$\alpha_{gv}$$
:  $g + v = c$ ,

recombination of interstitials and vacancies in gas-vacancy complexes

$$\alpha_{iv}$$
:  $i + c = i + v + g = g$ ,

thermal decaying of gas-vacancy complexes

$$\omega_c$$
:  $c = g + v$ .

All of constants a have the following form

$$\alpha_{ab} = \frac{4\pi R_{ab}}{\Omega} \left( D_a + D_b \right), \tag{5}$$

where  $R_{ab}$  are the reactions' radii,  $\Omega$  is the atom volume, and

$$\omega_c = \omega_d \exp(-E_c^d / kT), \tag{6}$$

where  $\omega_d$  is the vibration frequency factor for gas-vacancy complex,  $E_c^d$  is the dissociation energy of gas-vacancy complex. In Eqs. (1)-(4)  $Q_{j, v, g}(x)$  are the generation rates of interstitials, vacancies and implanted gas atoms respectively.

Without irradiation, i.e. at  $Q_{j, v, g} \equiv 0$ , Eqs.(1)-(4) have to describe the film growth with atom density  $\rho_0 < 1$ . Therefore we choose assume the next boundary condition for vacancies

$$C_{\nu}(0) = C_{\nu}^{0}, \tag{7}$$

where  $C_{\nu}^{0} = 1 - \rho_{0}$ . The boundary concentration  $C_{\nu}^{0}$  depends on vapor flux and temperature.

Suppose that the surface is ideal sink for interstitials, implanted gas atoms and gas-vacancy complexes:

$$C_{i,g,c}(0) = 0.$$
 (8)

At far distance from surface, i.e. with  $x \rightarrow \infty$  the point defects fluxes are absent:

$$\frac{d}{dx}C_{i,v,g,c}(\infty) = 0 (9)$$

Eqs. (1)-(4) should be complemented by an equation for determination of the surface velocity V.  $J_n \Delta t \Delta S$  atoms fall on surface square  $\Delta S$  during time  $\Delta t$  and  $J_g Y \Delta t \Delta S$  atoms (Y is the sputtering coefficient) leave the surface. The total number of atoms in the film increase:

 $\Delta \, N = (J_n - J_g Y) \, \Delta \, t \, \Delta \, S. \, \text{From the other hand, } \Delta \, N \, \text{can be written as} \, \, V \, \Delta \, t \, \Delta \, S \, \rho(\infty) \Omega^{-1} \, , \, \text{therefore}$ 

$$V = \frac{J_n - J_g Y}{1 - C_r(\infty) - C_r(\infty) + C_r(\infty)} \Omega. \tag{10}$$

Follow Ref.[3], let us describe the densification by the next way. The vacancies which are created in thin layer d refilled by arriving vapor atom or interstitials, so we change generation rates of vacancies and interstitials in this layer as

$$Q_{\nu}^{eff}\left(0 \le x \le \delta\right) = 0, \quad Q_{i}^{eff}\left(0 \le x \le \delta\right) = \max\left[0, Q_{i}\left(x\right) - Q_{\nu}\left(x\right)\right]. \tag{11}$$

From Eqs. (1)-(4), (10) with boundary conditions (7)-(9) one can find the film density  $\rho_f$ , i.e. density with  $x \to \infty$ :

$$\rho_f \equiv \rho(\infty) = 1 - C_v(\infty) - C_c(\infty) + C_i(\infty). \tag{12}$$

### 3. Calculations

Let us consider the growth of vapor-deposited Cr films which is bombarded with low-energy Ar<sup>+</sup> ions. The parameters of irradiation and material constants, which are used in Eqs.(1)-(4), (10) are shown in Table. The profiles of generated point defects, implanted gas atoms and the sputtering coefficients are calculated by the code SPURT [4], which is similar to the cascade code TRIM [5]. Nonlinear Eqs.(1)-(4), (10) are solved by finite element method.

Figure 1 shows the film density versus ion flux at different temperatures. The curve obtained at T=0 K corresponds to the Muller's model [3]. One can see that taking into account the

diffusional mobility of interstitials limits the growth of film density and it does not exceed the density of bulk material.

Figure 2 shows the film density versus ion energy at different ratios ion-to-vapor fluxes.

### 4. Conclusion

The proposed model of ion-assisted growth of vapor-deposited films correctly describes the film densification at high ion fluxes at the temperature, when interstitials are mobile.

# REFERENCES

- I. Nahodkln N.G., Shaldervan A.l.: Thin Solid Films 10 (1972) 109; 34 (1976) 21.
- 2. Greene J.E.: Solid State Technology, April (1987) 115.
- 3. Muller K.-H.: J.Appl.Phys. 59 (1986) 2803.
- 4. Bakai A.S., Sleptsov S.N., Zhukov A.I.: Metallofizika i novejshie tehnologii 17 (1995) 54.
- 5. Eckstein W., Biersack J.: Appl. Phys.(A) 34 (1984) 73.

Table. Material parameters used for calculation.

| Interstitial diffusivity pre-<br>exponential       | $0.015 \text{ cm}^2 \text{ s}^{-1}$  | Interstitial migration energy               | 0.15 eV                                              |
|----------------------------------------------------|--------------------------------------|---------------------------------------------|------------------------------------------------------|
| Vacancy diffusivity pre-<br>exponential            | $0.300 \text{ cm}^2 \text{ s}^{-1}$  | Vacancy migration en-<br>ergy               | 1.10 eV                                              |
| Argon diffusivity pre-<br>exponential              | $0.075 \text{ cm}^2 \text{ s}^{-1}$  | Argon migration energy                      | 0.30 eV                                              |
| Gas-vacancy diffusivity preexponential             | 10^ cm <sup>2</sup> s <sup>-1</sup>  | Migration energy of gas-<br>vacancy complex | 4.50 eV                                              |
| Vibration frequency factor for gas-vacancy complex | 1.3x10 <sup>13</sup> s <sup>-1</sup> | Dissociation energy of gas-vacancy complex  | 1.30 eV                                              |
| Recombination radius, $R_{iv}$                     | 0.580 nm                             | Trapping radius, $R_{gv} \sim R_{ic}$       | 0,75 nm                                              |
| Atom volume                                        | $12 \times 10^{-24} \text{ cm}^3$    | Vapor flux                                  | $3.75 \times 10^{16} \text{ cm}^{-2} \text{ s}^{-1}$ |
| Depth of δ-layer                                   | 0.410 nm                             | Constant lattice                            | 0.29 nm                                              |





Fig. 2. Relative density as a function of ion energy at T = 300 K