Charge Exchange of a Polar Molecule at Its Cation
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Abstract—The Landau—Herring method is used to derive an analytic expression for the one-electron
exchange interaction of a polar molecule with its positively charged ion, induced by a ¢-electron. Analo-
gously to the classical Van der Pole method, the exchange interaction potential is averaged over the rotational
states of colliding particles. The resonant charge-transfer cross section is calculated, and the effect of the
dipole moments of the core on the cross section is analyzed. It is shown that allowance for the dependence of
the exchange potential on the orientation of the dipole moments relative to the molecular axis may change
the dependence of the cross section on the velocity of colliding particles, which is typical of the resonant
charge exchange, from the resonance to the quasi-resonance dependence.

1. INTRODUCTION

The charge-exchange process involves the charge
transfer upon a collision of an ion with a neutral parti-
cle. It is well known [1, 2] that an electron transition
during charge exchange is accounted for by the
exchange interaction potential of colliding particles. If
an electron performs a transition between identical
particles or between particles with close energies of
electron bound states, we have a resonant or quasi-res-
onant charge exchange. These reactions are character-
ized by large cross sections [1, 2], and large (as com-
pared to the characteristic size of particles) inter-
atomic distances play the major role in the description
of their dynamics. For this reason, the application of
asymptotic methods for calculating the exchange
interaction potential of colliding particles at large
interatomic distances R is of special interest. An
asymptotically exact (in the powers of 1/R) descrip-
tion of the one-electron exchange interaction in the
range of large internuclear distances was proposed for
the first time by Landau [3] and Herring [4, 5]. The
Landau—Herring method has found large applications
for calculating the one- and two-electron exchange
interaction potentials in ion—atom and atom—atom
systems. The Landau—Herring method and its appli-
cations are reviewed in [6]. However, the application
of the asymptotic Landau—Herring method for
describing inelastic collisions of molecules with atoms
and molecules with molecules has been developed to a
much smaller extent. In [7], the Landau—Herring
method was used for calculating one-electron
exchange interaction of a diatomic homonuclear mol-
ecule with an atomic ion. By way of example of appli-
cation of the expression derived for the exchange
interaction potential, the electron capture cross sec-

tion was calculated in [7] for a slow collision H, +

He§+ ; the results were found to be in good agreement

with experiment. In [8, 9], the application of the semi-
classical method for describing one-electron capture
in collisions of neutral polar molecules with multiply
charged ions was considered. The semiclassical
approach used in [8, 9] was proposed for the first time
in [10] (see also Section 3.4.2 in [6]) and is in fact a
generalization of the Landau—Herring method to the
case of collision of particles with strongly differing
charges (e.g., atoms and multiply charged ions). This
method is not used for describing collisions of identi-
cal particles. Finally, in a recent publication [11], the
method proposed in [7] was generalized to the
description of two-electron exchange in collisions of
diatomic homonuclear molecules with atomic ions.

This study aims at evaluation of the one-electron
exchange interaction potential of a neutral polar mol-
ecule with its own positive ion located at a large dis-
tance from the molecule. We consider polar diatomic
molecules as well as polyatomic molecules of the type
of a symmetric top with an excited outer electron.
Although the latter assumption limits the applicability
of our results, it makes it possible to study the problem
analytically.

The expression derived for the exchange interac-
tion potential is used for analyzing the charge
exchange during the collision of a polar molecule with
its own ion. This reaction is interesting due to the fact
that it has features of a purely resonant and quasi-res-
onant process at the same time. On the one hand, the
electron transition occurs between identical molecular
cores. On the other hand, due to rotation of the mole-
cule, various mutual orientations of the dipole



moments of molecular cores are possible, leading to a
difference in the binding energies of electrons local-
ized at different cores. Thus, a defect of resonance
appears, which is not, however, a constant quantity,
but depends on the intermolecular distance and on the
mutual orientation of the cores. It is natural to refer to
this resonance defect as geometrical.

Although the results of this work are quite general,
the main emphasis is placed on analysis of the most
physically substantiated case of the transition of the
outer so-electron of the molecule. Unless the opposite
is stipulated, we will use atomic units.

2. ASYMPTOTIC FORM OF THE ELECTRON
WAVEFUNCTION IN THE FIELD
OF THE MOLECULAR CORE

Let us consider the motion of an electron at large
distances r > 1 from the charged molecular core pos-
sessing a constant dipole moment d. The long-range
part of the potential of interaction of the outer elec-
tron with the core has the form

Vi~ 14T o rs 1 (1)
rooR

Choosing the polar axis of the spherical system of
coordinates along dipole moment d, we can write the
Schrodinger equation for the electron moving in
field (1) for r > 1:
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This equation permits the separation of angular
and radial variables

¥(r) = R(NELS, ), 3)

where dipole-spherical functions % satisfy the equa-

tion
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In axially symmetric potential (1), projection m of
the orbital angular momentum ofthe electron onto the
dipole axis is conserved; therefore, % = %,,., where
L>|m| is the integer labeling eigenvalues mn,, of
Eq. (4) in their increasing order for a fixed m. For
d — 0, the relation n;,, — L(I. + 1) holds so that L
acquires the meaning of the conventional orbital
angular momentum. The properties of the % function
are described in detail in [12—14].

The dipole-spherical functions can be expanded
into a series in spherical harmonics:
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Substituting expansion (5) into Eq. (4), we obtain

the recurrence relation for coefficients a7, :
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Radial functions R(r) satisfy the equation
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coinciding in form with the radial Schrodinger equa-
tion in a Coulomb field. This equation leads to the
asymptotic form of radial functions R(r) of electron
bound states for r > 1:

R(r> D)~ N/* e ™, (7)

where « = J/—2F and N is the normalization factor.

Normalization factor N of electron wavefunction
Y for r > 1 can be determined from the condition of
joining with the electron wavefunction for » = 1, cal-
culated, for example, by the methods of quantum
chemistry. In our numerical calculations, we will use
normalization factor N and energy levels F of electron
bound states from the analytic solution [12] to the
Schrodinger equation for an electron in potential (1):
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where n, = 0, 1, 2, ... is the radial quantum number,
Prm= Mzm+ 1/HY2 and v =n, + p;,, + 1/2. Nonin-
tegral number v is analogous to the principal quantum
number for the hydrogen atom.

3. EXCHANGE INTERACTION POTENTIAL

In the Born—Oppenheimer approximation, the
Hamiltonian of an outer electron moving in the field
of two identical molecular cores with different orien-
tations in space (Fig. 1) has the form

I = =V + V(1) + Vi(n). ©®

where the potential of the cores has asymptotic form
(1):
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for r> 1,

r; = R +r,, R being the vector of the intermolecular
axis, and |[d,| = |d,| =d.
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Fig. 1. Geometry of the “outer electron in the field of
molecular cores” system.

Solution yy; to the Schrdodinger equation with
Hamiltonian (9), which corresponds to the localiza-
tion of the electron on the first molecular core, satis-
fies the boundary condition

y; — W, for 1y <R, (10)

where YW, is the solution to the unperturbed
Schrodinger equation

[_ %Vz'i' Vl(rl)—E1:|\P1 = O

(11)

In region r; <€ R, r, = R, potential energy V,(r,) in
expression (9) can be treated as a perturbation. In this
case, the unperturbed equation has the form (11). We
denote the perturbed energy as I, Setting 1/r, = 1/R +
R - r;/R3, we obtain the following relation correct to
the terms on the order of R~2:

E = F - 1 dcose, N d,coseg, N 0(i)’ (12)
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where d, is the projection of the electron dipole
moment d, = —(¥,|r,|'¥;) in state ¥, onto the direc-

tion of dipole moment d; of the core (obviously, vector
d, is directed along d,; therefore, d, = +/d,[), and €, ,
are the angles between vectors d; , and the intermolec-
ular axis. It can be seen from expression (12) that no
exact resonance is observed between the energies of
the electrons localized at different cores because the

term on the order of R depends on the mutual orien-
tation of the molecular cores. This leads to the above-
mentioned geometrical defect of resonance.

Using expressions (3), (5), and (7), we can write
the electron wavefunction in the unperturbed poten-

tial of molecular core 1 in the coordinate system {x| ,

¥1, 2, ) rigidly fixed to the core, in which the z; axis is
directed along vector d;, for 1 € <€ R:

Y, = Nr}/K’le*Krl Z azzYlm(Sl: ?1),
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where x = ,/-2F, and 3, and @, are the angular coor-

dinates of vector r; in the system {x; , ¥, 2} }.

(13)

Passing to coordinate system {x, y, z} associated
with the intermolecular axis, in which the z axis is

directed along vector R, we can write expression (13)
for wavefunction ¥, in the form [15]
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Here, Di{m (a, B, y) is the Wigner D function; o, By, 74
are the Euler angles for the transformation from the
coordinate system {x, y, z} to {x}, ¥;, z; }; and 0, and
¢, are the angular coordinates of vector r; in system
x, v, 2.

To evaluate the exchange interaction potential, we
must know wavefunction y; in region r; ~ r, ~ R/2. In
this region, potential energies V;(r;) and V,(r,) are of
the same order of magnitude; therefore, we cannot
treat V, as a perturbation relative to V| any longer.
Accurate to terms on the order of R™! in Hamilto-
nian (9) and in expression (12) for F;, we can write the

Schradinger equation for wavefunction vy in region
r~r~R/2:
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In accordance with the Landau—Herring method,
we seek the solution to Eq. (15) in the form

Wy = Wi(r)y(ry). (16)
Substituting this expression into Eq. (15) and omitting

(15)

all terms on the order of r]z (in particular, in the

expressions for V2y, and V¥,Vy,), we obtain the fol-
lowing equation for y(r):
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Relation (10) leads to the boundary condition

Yi(r)) — 1 for r, — 0. (18)
Using the fact that
Y, or, R

for r; ~ R/2 and disregarding second derivative y; , we
can reduce Eq. (17) to the form
dr,
The second derivative in Eq. (17) can be disre-
garded for kR > 1. This condition follows from the
estimates of ¥ in Eq. (19) and of ] in Eq. (19) dif-

(19)



ferentiated with respect to r;. The solution to Eq. (19)
satisfying boundary condition (18) has the form

_ [r+r;— ReosO,7V/~ (_i)
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The expression for wavefunction y; for an electron
localized at the second core in the state with unper-
turbed energy F, = F| in coordinate system {x, y, z}
can be obtained by the transposition ofindices 1 «— 2
in expressions (14), (16), and (20) for y; and by the
sign reversal of the cosine in formula (20) because the
argument of the cosine in Eq. (20) is in fact the angle
between the radius vector of the electron and the inter-
molecular axis (i.e., for y,, this angle is 1 — 0,). To
avoid the difficulties associated with the degeneracy of
energy levels with +|m| in an axially symmetric field,
we confine our analysis to the states with m = 0. This
case appears as most interesting because the effect of
the nonspherical dipole potential is most pronounced
precisely in these states. For m = 0, only two states (y
and ;) are in resonance.

Function AE= 2(\VH|I;T |y = 2H , is the potential

of the one-electron exchange interaction. In the Lan-
dau—Herring method, this function can be expressed
as the surface integral [3—6]

(20)

AE(R) = [(wiVyn—viVynds,
S

where § is the plane perpendicular to vector R and
intersecting it at the point for which x; , ~ R/2 (it
should be recalled that x; + x, = R; see Fig. 1). The
outward normal vector n to plane § is assumed to be
directed from the first core to the second: n = R/R.

For kR > 1, wavefunctions y;  ~ exp(—«ry ;) in
the region where r.,~ R/2, as follows directly from
Egs. (14) and (20). Therefore, |Vyy,| ~ eXp( Krp).
Introducing polar coordinates {p 0} (angle ¢ is mea-
sured from the positive direction of the x axis of system
{x, ¥, z}) on the .§ plane with the origin at the point of
its intersection with R, we obtain the following esti-
mate for one of the integrals in Eq. (21):

2D
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For small p, we have

pdp. (22)
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and r, + r, ~ R+ p?/R; therefore, we can write rela-
tion (22) in the form
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It can be seen from this relation that the structure
of the integrand in Eq. (21) is such that the main con-

(23)

tribution to integral (21) for xR > 1 comes only from
the narrow region on the .S plane near the R axis, in
which p <€ R. In this region, 0; = x;/R ~ p/R < 1;
therefore, for spherical functions Y,,,(0;, ¢;) in relation
(14), we can use the asymptotic expansion [15]
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Using now the approximate expressions for y; ,,

which are valid near the R axis, where 0; and 71— 0, < 1,

R 1/x X
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as well as the fact that the relations Vy; = —xyn and
Vy; ~kyyn hold to within the terms on the order of R,

we obtain the following expression for the exchange
interaction potential for m = 0 and xR > 1:
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where the following notation is used:
AO(R) _ 2 —KRRZ/K— le—l/K.

Since calculations are performed in the first nonva-
nishing order in R~!, we must retain in the sum over k
in expression (24) only the term with & = 0. In addi-
tion, we take into account the fact that Wigner func-
tion Déo depends only on argument 3. Thus, we can
write

AE(R’ Bla BZ)

= Ay(R) Z (- 1) aLllale,\/(211+ D2L+1) (25)

1,1,>0
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In the coordinate system {x', ¥, z' } with the 7' axis
directed along the dipole moment of the molecule, the
wavefunction of the outer electron for m = 0 is axisym-
metric; therefore, in the first approximation, the value
of the wavefunction in the narrow region between the
centers of molecular particles can depend only on the
polar angle of the intermolecular axis in system

{x", ¥, 7}, which coincides with Euler angle [
(or © — B). For this reason, the exchange interaction



potential (25) does not contain the dependence on
Euler angle o and . In the general case of m # 0, this
is obviously incorrect.

Expression (25) for the exchange interaction
potential for L > 0 is valid provided that the orbital
angular momentum of the outer electron is connected
with the axis of dipole d and not with the intermolec-
ular axis. The criterion for this (disregarding relativis-
tic interactions) is the requirement that the mean dis-
tance between the electron energy level for a fixed L
and for different values of the angular momentum pro-
jection m = —L, ..., L onto the dipole axis must be
much larger than the distance between energy levels
with different projections m' onto the intermolecular
axis. This criterion can be violated for R > 1 for very
small values of dipole moment d of the core. We will
henceforth assume that the values of d are not too
small, so that the conditions for the applicability of
formula (25) formulated above hold.

4. RESONANT CHARGE EXCHANGE

The probability of resonant charge exchange as a
result of collision of a neutral molecule with a molec-
ular ion for a given impact parameter » is [2]

P =sin'(h), Cb) = | %dt, (26)

where A(R) is the exchange interaction potential of a
molecule with the molecular ion taking into account
the rotation of the cores.

We assume that the ion and the molecule move in
rectilinear trajectories R? = b* + v*#, where v is the
relative velocity of the colliding particles. For the
above dependence R(f) and for large impact parame-
ters kb > 1, the expression for {(b) can be written in

the form
c) = L [2ach),

In the expression for the resonant charge-exchange
cross section

27)

G, = jznbsinqu)db,
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quantity sin?C in the integrand can be replaced by 1/2
for the same impact parameters » for which the condi-
tion |[{(h)| > 1 is satisfied. The resonant charge-
exchange region is bounded by the values of b for
which |{(h)| ~ 1. A more exact condition for determin-
ing the resonant charge-transfer cross section has the
form [16]

|C(Ro)| = 0.28;
here, 6, = T:Ré /2.

To obtain the exchange interaction potential A(R)
taking into account the rotation of the cores, we aver-

(28)

age expression (25) for AE(R, B, B,) over the rota-
tional states of the molecule and the molecular ion. It
will be shown below that this averaging is analogous to
the Van der Pole approximation, which is well known
in classical mechanics:

A(R) = <J1: Ml: Kl: JZ: MZ: K2|
x AE(R, By, B, My, Ky, T, M), Ky,
where

(29)
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is the product of rotational wavefunctions of mole-
cules, which are assumed for generality to be mole-
cules of the type of a symmetric top. Dipole moment d
of the core is assumed to be directed along the symme-
try axis of the top; J, M, K are the total angular
momentum of a molecular particle, its projection on
the intermolecular axis, and on the top axis, respec-
tively.

Performing actual calculation in (29) with the help
of the known expression for the integral of the three
Wigner D-functions [15], we obtain

I
ACR) = A(R) 3 (=1) ayap, 21+ DL+ T)
11,20 (31)
M, LK LM, LK
X CJiMizlocfiKizloCJzMzzzo Jszzzo-

The averaging performed in this expression is justi-
fied if the rotational frequency of molecules ®,; ~ J/1,
where [ is the moment of inertia of a molecule, is
much higher than the frequency of electron tunneling
o; ~ AE ~ Ay(R) through the potential barrier between
the cores. In the general case, this means that expres-
sion (31) is valid forJ > 1. We can obtain a more exact
condition for the applicability of formula (31) for cal-
culating the resonant charge-transfer cross section.
Relations (27) and (28) lead to the estimate of Ay(b) at
the boundary of the resonant charge-transfer region

b= Ry
/EI
Af(R) ~v [& ~ |—,
o(Ro) V’\/;O VKRO

where F is the binding energy of the outer electron in
the molecule. Estimating the molecular moment of
inertia 7 ~ pa?, where p is the mass and « is the char-
acteristic size of the molecular core, we can write the
condition o,,; > o, sufficient for the applicability of
formula (31) in the case of resonant charge transfer in

the form

Erot > '\]EklEI 4 ’
JKR,
where E,,, ~ J?/I is the rotational energy of the core
and E, ~ M+? is the kinetic energy of the translational

(32)
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Fig. 2. Resonant charge-transfer cross section for collision of a polar molecule with a molecular ion for d = 0.6 a.u. The outer
electron of the molecule is in state (a) 2so and (b) 3sc. The rotational numbers of the coresare J; =/, = 10, K; = K; = 10. Dashed
and dot-and-dash curves correspond to the maximal and minimal values of the resonance charge-transfer cross section, respec-
tively. Solid curves are the cross sections averaged over projections M|, M, of the angular momenta of the cores. Dotted curves
correspond to the cross section calculated with exchange interaction potential (34).

motion of the cores. Considering that kR, > 1 and
a ~ 1, we can write condition (32) in the form

Ey~ Ek|E| (33)
It follows from this relation that for p ~ 10 a.m.u.,
|E| ~ 1, v ~ 1073, the rotational number is J ~ 10. In
addition, condition (31) is applicable for describing
the resonant charge transfer in a medium in thermo-
dynamic equilibrium.

Exchange interaction potential (31) averaged over
the rotational state of the cores, as well as nonaveraged
potential (25), depends on the orientations of the
cores relative to the intermolecular axis. For fixed
quantum numbers J; , and K| ,, this orientation is
specified by the projections M| and M, of the angular
momenta of the cores onto the intermolecular axis. In
accordance with conditions (27) and (28), the
exchange interaction cross section must also be a
function of projections M, and M,. Such an orienta-
tion dependence must obviously be manifested most
strongly for K|, = J, and K, = J,. Figure 2 shows the
results of calculation of the resonance charge-transfer
cross section with parameters N and E of the core
potential from formula (8). The state of an electron
bound to the core is characterized by quantum num-
bers n, L, m of the state of the united atom, where
n=n,+ L + 1 and n, is the radial quantum number
introduced in Section 2. It can be seen from Fig. 2 that
this orientation dependence exists indeed. However, it
is more interesting for applications to determine the
value of the cross section averaged over projections M|
and M, of the angular momenta of the cores. Appro-
priate calculations show that for L = 0 and for d =
1.5D =~ 0.6 a.u., we can disregard the admixture of
states with /; , # 0 in the sum over /;, /, in Eq. (31).
Then we obtain for A(R) the following expression

independent of rotational quantum numbers of the
COreS:

A(R) ~ N e R M ab(d)T’, (34)
which leads in accordance with relations (27) and (28)
to the resonance charge-transfer cross section inde-
pendent of the rotational state of the cores. It can be
seen from Fig. 2 that the cross section averaged over
projections M, and M, almost coincides with the cross
section calculated with the exchange interaction
potential (34). If L # 0, the dependence of the
exchange interaction potential on projections M, and
M, is preserved if we omit the terms with /; , # L in
relation (31), and averaging over these projections can
be carried out only numerically.

Expression (34) for the exchange interaction
potential for L. = 0 and m = 0 differs from an analogous
expression |6] for an s-electron in a spherically sym-
metric potential only in the presence of factor
[agy ()] The limiting case d = 0 in which af, = 1 cor-
responds to the resonant charge transfer of a hydrogen
atom at proton H(ns) + H™. In states with L = 0 and
m =0, the dipole potential produces an additional
(as compared to the Coulomb) attraction to the core,
which leads to a rapid increase in the electron binding
energy |E| = k?/2 with the core upon an increase in d
and, as a result of an exponential dependence of
exchange interaction potential (34) on k, to a decrease
in R, in formula (28). Figure 3 shows the effect of
dipole moment d of the core on the resonant charge-
transfer cross section.

5. QUASI-RESONANT CHARGE TRANSFER
FOR GEOMETRICAL RESONANCE DEFECT

We have considered the charge transfer of a polar
molecule at its own molecular ion as a resonant pro-
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Fig. 3. Resonant charge-transfer cross section averaged
over projections M|, M, for a collision of a polar molecule
for various values of dipole moment d of the molecular
core. The outer electron of the molecule is in state 2sc: d =
0.6 (dotted curve), 0.3 (dot-and-dash curve), and 0.1 a.u.
(dashed curve); the solid curve is the H(2s) + H™ resonant
charge-transfer cross section.

cess. This is true if exchange interaction potential A(R)
is much larger than geometrical resonance defect
k(R), which is equal to the difference in the energies of
states corresponding to the localization of an electron
at different cores. Analogously to the calculation of
exchange interaction potential A(R), we average the
difference E; — £y, in electron energies (12) over rota-
tional states of the molecule and the molecular ion
(30). As aresult, we obtain the following expression for
k(R) in the first nonvanishing order in R~":

k(R) _ MlKl MZKZ :|’

-2 (35)
RO R )

where & = d + d, is the total dipole moment of the
molecule. Each term in expression (35) has the mean-
ing of the Stark shift of the energy level of a neutral
polar molecule [15] consisting of the first or second
core and the outer electron bound to it in the molecu-
lar ion electric field on the order of 1/R?. This is a nat-
ural result because in the absence of electrostatic
interaction, the energy of the “molecule + molecular
ion” system would not depend on the localization of
the electron at one of the molecular particles.

Using the estimates

e

0
(see relations (27) and (28)), which imply that A(R;) ~

v.Jx/ R, , we can write the condition |[A(Ry)| > |k(Ry),

under which the charge exchange process can be
treated as resonant, in the form

|
K v

v >

)]
,\/ER3/2' (36)
0

Setting k ~ 1, Ry~ 10, and ¥ ~ 1, we find that con-
dition (36) is violated in the region of v < 103 to 102
Thus, the charge exchange process for molecules of
the type of a symmetric top with low relative velocities
of collision should be treated as a quasi-resonant pro-
cess. The characteristic size R, for a quasi-resonant
process can be determined from the condition

Since A depends on R exponentially and & depends
on R, only as a power function, the resonance defect in
the vicinity of R = R, can be treated as constant and
equal to k, = k(R,) = const. Then, in accordance with
the Rosen—Zener—Demkov formula, the probability
of quasi-resonant charge transfer as a result of colli-
sion with a given impact parameter b and relative
velocity v of colliding particles is given by [16]

b sin’¢(b)
cosh2(oc/x)
where quantity {(b) was introduced in (26), o =

nk./2kv, andx = /1 -b°/R’.

The quasi-resonant charge-transfer cross section
corresponding to probability (37) has the form [16]

{1/2nR3f(oc), if R.<R,
G, =
1/27R;, if R,>R,,

(37)

(38)

where
1

J‘ 2xdx
0 coshz(oc/x)
Expression (38) is valid for xR, > 1.

Figure 4 shows the results of calculation of the
quasi-resonant charge-transfer cross section for the
same parameters of motion of the outer electron as in
Fig. 2. For {(b), we used the expression independent of
the orientation of the cores, which can be derived
using exchange interaction potential (34). In this case,
the geometrical resonance defect k(R) and, hence, R,
and k, in accordance with formula (35) depend con-
siderably on projections M, M, of the angular
momenta of the cores on the intermolecular axis (we
assume that J, , and K| , are fixed). Therefore, cross
section o, also depends substantially on M,, M,. Fig-
ure 4 shows the cross section 6, averaged over M, M,.
It can be seen that when the relative velocity of collid-
ing particles decreases, the electrostatic interaction
between them may change the type of charge transfer
from resonant to quasi-resonant. The charge-transfer
cross section calculated with allowance for the emerg-
ing geometric resonance defect has a peak in the
dependence on the velocity of colliding particles,
which is typical of nonresonant processes.

The results obtained above for molecules of the
type of a symmetric top (in particular, expressions (31)
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Fig. 4. Resonant charge-transfer cross section averaged over projections M, M, for a collision of a polar molecule ford = 0.6 a.u.
and K| = K, = 5 (dashed curves), 3 (dot-and-dash curves), and 1 (dotted curves). The outer electron of the molecule is in state
(a) 2so and (b) 3so. The angular momenta of the cores are J| = J, = 10. Solid curves correspond to the resonant charge-transfer
cross section calculated with exchange interaction potential (34).

for the exchange interaction potential and (35) for the
geometric resonance defect) can be extended to the
case of diatomic polar molecules by substituting quan-
tum number A (projection of the total orbital angular
momentum of electrons of a diatomic molecule on its
axis) for the projection of angular momentum K of the
core on the top axis. For Z-terms (A = 0) of a diatomic
molecule, we have k(R) ~ 1/R*, and the charge-
exchange process can be treated as resonant in the
entire admissible interval of collision velocities.
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