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Abstract—The transition radiation of relativistic electrons in nonuniform media is considered. Based on the
equivalent photon method and the eikonal approximation in wave mechanics, a method for describing this pro-
cess is proposed. For the case in which the permittivity depends on several coordinates, equations for the spec-
tral-angular density of transition radiation are obtained. The main results obtained in the Born and eikonal
approximations of the theory of transition radiation are compared. The equations obtained are used to analyze

the transition radiation process for a fiberlike target.

INTRODUCTION

Transition radiation arises when a charged particle
crosses the interface between two media with different
dielectric properties [1-3]. As a rule, this process is
described by joining the fields (generated by this parti-
cle in the medium) at the interface. However, such an
approach to the description of transition radiation can
be developed only for media with interfaces of the sim-
plest shapes, namely, flat, spherical, or cylindrical ones
[1-4]. In addition, it is usually assumed that the permit-
tivity of each medium is constant. For media with
boundaries of complicated or smeared shapes, other
approaches to the description of this process must be
developed.

One of such approaches for ultrarelativistic particles
in the high-frequency range uses the Born expansion of
the radiation amplitude in terms of the small deviation
of the permittivity from unity [2, 3]. In the first order of
the perturbation theory in this parameter, the radiation
amplitude is determined by the Fourier component of
the spatial electron density distribution in the medium.
However, as the frequency of the radiated photon
decreases, the applicability condition for this expansion
soon becomes violated. In the problem under consider-
ation, it is therefore necessary to use methods that can be
used beyond the limits of the Born perturbation theory.

In this paper, we study whether it is possible to use
the eikonal approximation to describe the process of
transition radiation of relativistic electrons in a medium
with nonuniform permittivity. An approximate method
for describing a transition radiation process uses a rep-
resentation of the particle field in the form of a local-
ized packet of free electromagnetic waves and the
eikonal approximation to describe the scattering pro-

cess of this packet by the nonuniformities of the
medium permittivity.

At first, we derive general equations for the spectral-
angular radiation density of a relativistic electron trav-
eling with a constant velocity in a medium with a non-
uniform permittivity and consider the limiting case for
these equations corresponding to the first approxima-
tion of the Born perturbation theory in the small devia-
tion of the permittivity from unity. Then, we discuss
whether it is possible to consider this problem by using
the eikonal approximation. The obtained equations are
used in the problems of transition radiation in thin lay-
ers of materials and for a fiberlike target. We obtain
conditions under which it is possible to study these pro-
cesses by the use of the eikonal approximation. In this
paper, we also compare the main characteristics of tran-
sition radiation and bremsstrahlung in material thin lay-
ers. In this case, emphasis is on the conditions under
which the transition mechanism contributes mainly to
radiation.

PROCEDURE

Let us consider a particle with charge ¢ moving with
a constant velocity v in a nonuniform medium with per-
mittivity €,(r). In this case, the Fourier component of

the electric field E (r) = J.:E (r, Hexp(iondt gener-

ated by a propagating particle in a target medium satis-
fies the equations [2]
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(we use the system of units in which the velocity of
light ¢ is taken as unity).

We can show [5] that the spectral-angular radiation
density can be described by
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where @ and k are the frequency and the wave vector of
the radiated wave, respectively,

I= j d’rexp(—ikr)(1 —g,(r))E,(r). @)

Let us consider the transition radiation in the high-
frequency range, where the target permittivity is deter-
mined by the relationship

Eo(r)=1-0/0°, ©> o, (5)

where ®, = A/4nezn(r)/m is the plasma frequency, m
and e are the electron mass and charge, and n(r) is the
electron density in the target. In this case, the solution
of Egs. (1) and (2) can be sought as an expansion in
terms of the small quantity (1 — g,). In the first order of
this expansion (which corresponds to the first Born
approximation), the solution of Eqs. (1) and (2) is the
Coulomb field of the particle in a vacuum:

Ef,bc)(r) = 2670)exp(i0)z/v)
v
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where K, (x) is the modified Bessel function of the third

kind (the Macdonald function) and y= (1 — v*)"2 is the
Lorentz factor of the particle. Thus, expression (4) with

(6)

the substitution E (r) = EEDC) (r) corresponds to the

Born approximation in the theory of transition radia-
tion. It can be easily seen that the typical values of the
transverse (normal to v) component of the intensity of
the Coulomb field of the relativistic particle exceed
those of the longitudinal component by a factor . For
the spectral-angular density of the transition radiation,
we can therefore restrict ourselves only to the trans-
verse component of the vector I up to the terms of the
order of 72 in expression (3). In this case, we have
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Using the Born approximation in the theory of tran-
sition radiation, one can study radiation for targets of
sufficiently complicated shapes. Thus, the authors of [35,

7, 8] studied radiation for fiberlike targets, nanotubes,
and capillaries in a continuous medium. Here, having in
mind the subsequent comparison of the results
(obtained in the Born and eikonal approximations) for
the spectral-angular radiation density and the applica-
bility limits for these approximations, we consider the
simplest problem of transition radiation for the normal
impact of a particle on a uniform plane-parallel plate of
thickness L. The Born approximation in this problem
yields the following result:
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As we can see below, the Born approximation in the
theory of transition radiation is valid under the follow-
ing condition:

o llo <1, (10)

where [ is the length of the region in which the particle
interacts with the permittivity nonuniformity. This ine-
quality becomes invalid with increasing / or decreasing o;
and therefore, it becomes necessary to study the transi-
tion radiation process outside the applicability range of
the Born approximation. The eikonal approximation is
one of the methods that can be used beyond the scope
of the Born perturbation theory.

However, a direct application of the eikonal approx-
imation to the theory of transition radiation raises diffi-
culties related to the facts that Eq. (1) for the electric
field contains the current density of the particle (the last
term in Eq. (1)) and that the problem becomes multidi-
mensional in the case of a target of sufficiently compli-
cated geometry (for example, the transition radiation
problem for a fiberlike target is two-dimensional).

The authors of [2, 9] tried to overcome these diffi-
culties by constructing the Green'’s function for Eq. (1).
The author of [2] constructed a semiclassical Green’s
function for Eq. (1) to fit the one-dimensional problem
of the transition radiation of relativistic particles in a
medium with a nonuniform permittivity. However, the
one-dimensional character of the problem was used in
the method described in [2].

The authors of [9] proposed a method for construct-
ing Green’s function for Eq. (1) with the particle cur-



rent in the case of multidimensional problems, and this
method is valid under certain conditions similar to the
applicability conditions for the eikonal approximation
in quantum mechanics. Although, using this method,
one can go beyond the scope of the Born theory of tran-
sition radiation for multidimensional problems, it nev-
ertheless turns out to be sufficiently complicated and
cumbersome in certain particular problems. This
method was only used in calculations of the energy lost
by a relativistic charged particle crossing a plate in a
random medium.

In this paper, we develop the theory of transition
radiation based on the equivalent photon method [10].
Within this theory, the transition radiation process is
regarded as a scattering process of the particle electro-
magnetic field by the nonuniformities of the medium
permittivity; in this case, the particle field is repre-
sented as a wave packet of free electromagnetic waves.
Using such an approach to the transition radiation prob-
lem, one can pass from the solution of Eq. (1) with a
particle current to the following equation describing the
evolution of a wave packet in a nonuniform medium:

(11

In this case, the initial state of the wave packet (before
it enters the medium) is a packet obtained by expanding
the particle eigenfield in terms of the set of free electro-
magnetic waves. This leads to the construction of a
solution of Eq. (11) in the eikonal approximation for
the multidimensional case by using simple methods.

(A+®)E, = V(VE,) + © (1 —¢,)E,.

Taking the foregoing into account, we seek a solu-
tion of Eq. (11) in the form

E,(r) = exp(ionz)®(r). (12)
We assume that the function ®(r) varies sufficiently
slowly in the space so that, to find it, one can neglect the
second derivatives in Eq. (11). In this approximation,
equation for @(r) becomes

2i82 = -0Pe +iVOD,
Jz (13)
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Separating the longitudinal and transverse components,
we have

IO, A0,
% + W = —l(J)E(Dq)Z, (14)
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Substituting ®, from the first equation into the second
one, we obtain
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When deriving Eq. (13), we neglected the second
derivatives of the function ®(r). The second term on
the right-hand side of Eq. (16) can be neglected with the
same accuracy. In this case, it is assumed that €,(r) also
varies sufficiently slowly in the transverse direction so
that the derivative V (1/g,) can be neglected. By using
the relations
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where p.is the typical distance in the transverse direc-
tion along which the quantity |® | varies significantly,
we estimate the first and second terms on the right-hand
side of Eq. (16) and obtain the following condition
determining the smallness of the second term on the
right-hand side of Eq. (16) compared to the first one:

P > . (17)
If this condition is satisfied, Eq. (16) becomes
oD o
a—; = —i5(1-g,)®,. (18)

Inserting the solution of the last equation into (12), we
obtain

Ey(r), = Ei?(rnexp{—i%’ | (1—em<r>>dz}, (19)

where Ef,?) (r), is the field of the incident wave packet
EQ(r), = @exp(imz)ﬂm(@) (20)
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In order that condition (17) be satisfied, it is neces-
sary that typical transverse distances along which ,(r)
varies considerably be at least equal to p.y. Thus, our

constructed solution is valid only in the case of a target
with sufficiently smeared boundaries.

Substituting (19) into (4), we obtain

I, = 2L2°’jd3rexp(i(m—kz)z—iklp)(l _e (1)
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The order of magnitude of the typical values of the
distances p. mainly contributing to integral (21) is

where &k, = ©0 and 0 is the observation angle for radia-
tion (0 < 1). According to Eq. (17), Eq. (21) is there-



fore valid in the frequency range ® and for radiation
angles determined by the inequalities

(22)

For small radiation angles, the order of smallness of
the exponent of the first exponential in (21) can be esti-
mated as w6%1/2, where [ is the target thickness along
the particle velocity direction. Then, if the condition

00’12 < 1 (23)

is satisfied, the first exponential in (21) can be replaced
by unity. In this case, integrating with respect to z, we
obtain the following expression for I ;;

1> o0,/0> yfl, w,/o > 0.
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Putting this value of Ifik) into (3), we obtain the spec-

tral-angular density of the transition radiation in the
eikonal approximation:

dE _ o'
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This equation is valid in the ranges of frequencies and
radiation angles determined by inequalities (22) and (23).

The exponent entering the last exponential in (21)
can be estimated in the following way:

ofa-

If this value is small as compared to unity, then expres-
sion (24) can be expanded in terms of the parameter

(25)
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0)?) l/m. In the first order of this expansion, Ifik) coin-

cides with the corresponding result I(lB) of the Born
approximation.

As lincreases and @ decreases, the inequality 0)?) /o <<€

1 becomes invalid. In this case, using (25), we can also
describe the transition radiation outside the applicabil-
ity range of the Born approximation. Indeed, as !/

. .y 2
increases and o decreases, the condition ), l/m=1can

always be satisfied, and the Born approximation ceases
to be valid under this condition. However, this condi-
tion does not contradict inequalities (22) and (23) deter-
mining the applicability conditions for (24). We note
that inequalities (22) and (23) can always hold if the
electron energy is sufficiently high in the range of typi-
cal transition radiation angles 6 ~ y!.

A particular form of the function 1 — g,4(r) was not
used in deriving (24); for this reason, this function can

be used to study the transition radiation for targets of
complicated geometries, such as dielectric fiber.

To determine the applicability limits of the obtained
equations more precisely, we consider the transition
radiation in the eikonal approximation for the normal
impact of the ultrarelativistic particle on a nonuniform
thin plate of thickness L. In this simplest one-dimen-
sional case, the dielectric properties of the target are
independent of p; therefore, condition (17) is necessar-
ily satisfied. The calculation using (24) yields

o

In this case, we obtain the following expression for the
spectral-angular radiation density in the range of small

[® - 8me k,

= ——————<exp z——
) mGi+(ﬂ)2{ { 2o’
vy

angles:
dE &’ 9 @, oL
=2=—<1- L=
Todo n2(92+y2)2{1 cosL)2 > H 27

We compare the results obtained in the Born (8), (9)
and eikonal (26), (27) approximations with the exact
spectral-angular radiation density for the thin plate. The
latter in the range of small angles has the form [1]
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Under the conditions

Volo' <1, ollo<l, (29)
precise equation (28) for the transition radiation inten-
sity transforms into (9) corresponding to the Born
approximation. Under the conditions
0’7 <o/o’ <1, (30)
precise result (28) for the radiation intensity transforms
into (27) corresponding to the eikonal approximation.

TRANSITION RADIATION
FOR A FIBERLIKE TARGET

We now consider transition radiation produced in
the case of fast charged particles hitting a dielectric
fiberlike target at a small angle y to the fiber axis. The
distribution of the electron density in the plane normal
to the fiber axis is assumed to be Gaussian with root-
mean-square radius R:
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Here, n, is the number of electrons per unit fiber length,
the z-axis direction coincides with the direction of the
particle velocity v, the fiber axis is parallel to the (x, z)
plane, and y,is the impact parameter of the hitting par-
ticle with respect to the fiber axis. In this case, the target
thickness along the direction of the particle motion is
[ ~ 2RMy; for this reason, condition (23) becomes

0O Ry < 1.
In this case, Eq. (24) yields
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Integrating with respect to x, we find that
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The order of magnitude of the typical values of y
mainly contributing to integral (33) is y/®, while that of
the typical values of y, is R. In the limiting case of a

thick fiber (R > y/w), the ¢ dependence of the last expo-
nential in (33) can be neglected. In this case, we have
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where o0 = /27 €2n,/moRV. Inserting this expression
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for Ifik) into (3), we obtain
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Equation (35) describes the transition radiation of
the electron hitting the fiber for a given impact param-

eter yo. To describe the radiation of a uniform particle
beam, the notion of radiation efficiency is introduced. It
is defined by the relation

Ky, 2
dwdo "V dwdo’
where x, and y, are the beam particle coordinates in the
plane normal to the velocity vector of the beam parti-
cles. In the case under consideration, where the beam
hits the target at a small angle to the axis of the long
fiber, dE/dwdo is independent of x,. In this case, radia-
tion efficiency (36) can be written as

dK
dwdo

where L is the fiber length. Here we use the fact that the
radiation under consideration is produced only by par-
ticles with coordinates x, in the range Ax, = L\.

Studying the transition radiation process for a fiber-
like target in the Born approximation, the authors of [8]

(36)
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singled out the factor Le6n§ y/m?y in the radiation effi-

ciencys; this factor determines the order of magnitude of
the radiation intensity. Separating the same factor in (37),
we can write radiation efficiency (37) in the form

L 6 2
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dwdo m oy
Here, we have
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and u = yO/Rﬁ . Using these equations, we can com-
pare the results for the radiation efficiency obtained in
the eikonal and Born approximations. As shown in [8],
the radiation efficiency for the fiber with electron den-
sity distribution (31) is determined by (38) with the
function F expressed as
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If condition o <€ 1 is satisfied, (39) can be expanded in
terms of o. In the first approximation of this expansion,
the function F¢* becomes
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This equation for F coincides with the correspond-
ing expression in (40) obtained in the Born approxima-
tion if this expression is expanded in terms of the
parameters RwO*/\y < 1, y/oR< 1, and (yy)! < 1, for
which Eq. (34) in the eikonal approximation was
obtained. These expansions correspond to the case in
which the radiation (in the case of a fiber) is assumed to
be concentrated in the range of small angles 0 <y <y to
the direction of the electron motion. The transverse size
R of the fiber is large as compared to the transverse size
~y/® of the particle Coulomb field in whose limits the
Fourier components of the electron field with frequency
@ are mainly concentrated.

Equation (39) demonstrates that, under the condi-
tion o 2 1, the transition radiation intensity obtained in
the eikonal approximation turns out to be less than the
corresponding result obtained in the Born approxima-
tion. At the same time, the shapes of the angular distri-
butions obtained in the eikonal and Born approxima-
tions turn out to be identical.

We note that the order of magnitude of the parame-
ter o in (34) coincides with that of the corresponding
parameter in (26) if the layer thickness L in (26) is
assumed to be equal to the length ~2RAy of the region
in which the electron effectively interacts with the fiber.
Indeed, assuming that n, ~ TR?n, where 7 is the average
density of electrons in the fiber, we can write the
parameter o in the form

F o= peo _

(41)

o~ (tne’ /) (2RNY),
which, for L ~ 2Ry, coincides with the corresponding

parameter 0)?) L/®in (26), up to a constant factor. Thus,

in the limit R > v/, the radiation for a fiber is equiva-
lent to that for a uniform plate whose thickness and
density are determined by the average electron density
and the effective fiber thickness for a given impact
parameter y,. Similar results were obtained for radiation in
the case of a uniform cylindrical fiber [11] as well.

CONCLUSIONS

We have considered the process of transition radia-
tion of relativistic electrons in a medium with a nonuni-
form permittivity. We have proposed an approach to the
description of this process using an equivalent photon
method and eikonal approximation to describe the
propagation of electromagnetic waves in a nonuniform
medium. Based on this approach, we have obtained
general equations for the spectral-angular density of
transition radiation without using a particular coordi-
nate dependence of the permittivity. In the case where

the permittivity depends on several coordinates, one
can consider transition radiation in the range of small
angles by using these equations. We have shown that,
using the eikonal approximation in our problem, we can
20 beyond the scope of the Born theory of transition
radiation, in which the expansion of the wave fields in
terms of the small deviation of the permittivity from
unity is used. We have stated the conditions under
which it is possible to use the Born and eikonal approx-
imations in the problem under consideration.

As an example of how the obtained equations can be
used for multidimensional problems, we have consid-
ered transition radiation for a fiberlike target under the
impact of particles at small angles to the fiber axis. In
this case, we have compared the spectral-angular densi-
ties obtained in the Born and eikonal approximations.
We have obtained the conditions under which it was
necessary to go beyond the scope of the Born approxi-
mation in order to describe the process under study.
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