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The nonlinear stationary excitations localized near the interface between media with spatial dispersion are
investigated. In the study of the given problem, of prime importance is a consideration of interaction of excitations
with the interface between the media. In this case, the arising localized excitations are nonlinear interface waves. It
is demonstrated that nonlinear interface waves of several types exist in the examined system. The conditions of their
existence are formulated.

1. In connection with the intensive development of physics of nonlinear phenomena, interest in problems of
localization of excitations of various nature in nonlinear inhomogencous media with spatial dispersion has increased
recently [1-3]. The nonlinear excitations localized near the interface between the media are widely covered both
theoretically and experimentally. Problems of electromagnetic wave localization at the interface between nonlinear media
without dispersion were discussed, for example, in [4, 5]. The field profile of these excitations is asymmetric (in contrast
with the field of freely propagating solitons). Such excitations were loosely called nonlinear surface waves, because they
were localized on a defect in the bulk of a solid rather than on its surface.

In [4, 5], the interaction between the wave and the interface was considered passive in character in the sense that
there was no parameter describing the intensity of wave interaction with the interface, and the boundary conditions were
reduced to the continuity condition for the sought-after field and its derivative at the interface. In most cases, the interaction
of linear [6-9] and nonlinear excitations [10, 11] with defects (and in particular, with the interface between the media) must
be taken into account even in the simplest short-range force approximation. Hereinafter, we consider that the interface
between the media interacts strongly with the wave and has the parameter characterizing this effect.

The dispersion of the medium and the interaction of the field with a defect were simultaneously taken into account,
for example, in [12] based on the generalized Korteweg—de Vries equation with the short-range potential describing a point
defect.

In modern physics of nonlinear phenomena it is well known [13, 14] that stationary nonlinear waves can be formed
only when there are two competing factors, namely, the nonlinearity of the medium and the linear wave dispersion. In this
regard, it is of interest to analyze conditions of existence of nonlinear excitations near the interface between nonlinear media
with spatial dispersion considering the wave interaction with the interface. The present study is devoted to a solution of
exactly this problem. The waves examined in the present study are called interface waves, because their localization is
studied with allowance for their interaction with the interface. In the present study, conditions of existence of nonlinear
interface waves of different types are formulated for media with and without spatial dispersion. A physical nature of the
examined excitations is not specified not to limit generality of the results obtained.

2. We now consider the case in which a wave propagates along a flat interface between two media with the same
spatial dispersions and different nonlinearitics. The wave dispersion is characterized by the parameter P, and the
nonlinearities on both sides of the interface differ by €. It is important that the wave interacts with the interface between the
media, which is modeled by a preset effective potential.

Let us generalize the model described in [5] where the problem was reduced to the one-dimensional nonlinear
Schrodinger equation in which the parameter f played the role of the coordinate in the plane of the interface between the



media. By analogy, we consider a wave propagating in the xOf plane. We also assume that the dispersion of the medium in
the direction perpendicular to the interface (along the Ox axis) is much greater than that in the interface plane (along the Or
axis). As a result, we obtain the generalized nonlinear Schrodinger equation:
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where o >0, B is the dispersion parameter the sign of which is determined by the dispersive properties of the medium (we
consider separately the cases of B >0 and B <0), and y> 0 characterizes the nonlinearity of the medium on the left of the
interface. The effective potential has the form
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Here the parameter U, characterizes the intensity of wave interaction with the interface in the plane perpendicular to the Ox
axis and passing through the point x =0, 8(x) is the Dirac delta-function, € is the potential difference between the media,
and ¢ is the difference between the nonlinearities of the media.

3. For a nonlinecar medium without dispersion and defects (when =0, e=0, Q=0, U, =0, and the remaining
parameters are nonzero), Eq. (1) has an exact solution in the form of a freely propagating soliton [13, 14]:
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localized in the direction perpendicular to the direction of its motion with a maximum lying on the straight line x = x,,, where
the wave number £ is the free parameter.

By direct substitution, we can verify that in a nonlinecar medium without defects but with dispersion (when € =0,
Q =0, U, =0, and the remaining parameters are nonzero), Eq. (1) has exact solutions of two types:
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which exists for B <0, and
2) odd with respect to the variable x
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4. We now consider the case in which the wave interacts with the interface between the nonlincar media without
dispersion. From Eq. (1) for f =0 and the remaining parameters being nonzero, we obtain the well-known boundary
conditions
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corresponding to the continuity condition of the function W (x, f) at the interface and the discontinuity condition for the first
derivative. Following [5] with allowance for Eq. (3), we seek a solution of Eq. (1) in the form
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with dispersion laws, according to Eq. (3), m; = o kl2 and 0 = o k22 . Since the frequency remains unchanged in the interface

plane, from the equality @; = ®, we obtain a relationship between wave numbers k22 =k*-Q/o., where the subscript “1”

for the wave number to the left of the interface has been omitted to simplify the subsequent presentation of the material.
Substituting Eq. (13) into Eq. (12), we find the parameters characterizing the position of a maximum of the
nonlinear interface wave:
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Thus, there are two nonlinear interface waves with the asymmetry determined by the maximum at x = X; or x = X5;
however, only one of them is stable. In order that such waves exist, conditions &, > /o and € >—y must be satisfied
together with one of the following conditions:

1) if the nonlinearity to the right of the interface is stronger than to the left of it (for € > 0), the condition kf <0
must be satisfied for € > ¢.; then the values specified by Eq. (14) are real;

2) if the nonlinearity to the right of the interface is weaker than to the left of it (for € < 0), &> 0 for —y <e <e,, and
then the values specified by Eq. (14) are real only when & > kf )



If the nonlinearities on both sides of the interface are identical, only one mode exists:
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It should be noted that the equality U, = 0 means only that the wave does not interact with the interface between the
media, but the interface itself remains unchanged. In this case, from Eq. (14) we derive the formulas presented in [5]:
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that determine two waves called nonlinear surface waves in [5]. In the derivation of the above formulas, the boundary
conditions of the continuity of the function (x, ) and its first derivative were used that follow from Eq. (12) at U, = 0. For
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these nonlinear waves localized at the passive interface between the media, the condition of their existence is &°> k.,
where kf = —yQ/eq.. This condition is satisfied if the nonlinearity parameters € and 7y are opposite in sign. This means that

wave amplitude (13) must exceed the critical value A4, =+/—2€2/¢ , which is the case for £ and € opposite in sign. In [5] it

was also demonstrated that the wave with a maximum at x = X is stable when € <0 (2 <0 in [5]).

It can be seen that the consideration of wave interaction with the interface between the media causes the existence
of nonlinear interface waves for a wider range of the parameters of the medium.

5. Now we study the existence of nonlinear interface waves in media with spatial dispersion. Given that all the
parameters of Eq. (1) are nonzero, we naturally obtain the following system of the boundary conditions [8, 9, 12]:
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Let us restrict ourselves to an examination of localization of waves described by Eq. (4) for B > 0, because the
problem of localization of waves described by Eq. (8) for B <0 gives no qualitatively new results, but the formulas become
more cumbersome.
In the examined case, we seck a solution of Eq. (1) in the form
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where according to Eq. (5), dispersion laws are @, = 4k (0.—4Pki) and @, = Q+4k; (a—4Pk3) . Since the frequency is

retained in the interface plane, from the equality ®; = @, it follows that
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where kﬁ, = o/8B > 0. Two signs under the radical sign in Eq. (17) indicate the existence of several interface waves under

specific conditions. Below we demonstrate that the condition 41k, <0 must be satisfied; thercfore, for definiteness we set
k1 <0 and &, > 0. For real wave number (17), we obtain that

1) two waves with wave numbers (17) exist when —q, <k <—-¢; and ¢; < g, where ¢, = \/k2 + ,/k; —-Q/8B .




2) one wave with wave number (17) exists with the plus sign for &y <—g5.

In these cases, conditions Q < o/4f and € >y must also be satisfied.

Substituting Eq. (16) into Eq. (15), we obtain a system of four equations. By simple manipulations, the pair of
equations from this system can be reduced to the expressions tanh’k, X, = —k»/3k; and tanh’k, X = —k;/3k,, from which the
condition /&, < O follows. Further manipulations yield solutions of the system in an explicit form:
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where we have introduced the following functions of the parameters entering into Eq. (1):
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Signs of these functions must be chosen to meet conditions &; <0 and k, > 0; therefore, we obtain ¢ <0 and @, <O0.
Figure 1 shows plots of functions (19), which in fact are dependences of the wave number 4, on the nonlinearity parameters
determining two interface modes by virtue of equality (18).

The function ¢ and hence functions @, and F will be real for € > —y (this region is bounded from the left by the
dashed straight line a in Fig. 1). The function F has a discontinuity at the nonlinearity parameter € = 45y/4 (shown by the

dashed straight line b in Fig. 1).
Our analysis of functions (19) has demonstrated that for —y&; <& <—y&,, where
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the functions @, have no real values. This means that interface waves (16) do not exist in this region (it is narrow, in
particular, for the parameters of Fig. 1, it is in the range 0.089y <& <-0.046Y). For -y <& <&, there are two interface
waves (16) with wave numbers determined by functions @, according to Eq. (18). For £ > —y&,, there is only one interface
wave (16) with the wave number determined by the function @,.
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