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Energy Estimation of Wettability
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Abstract—This work estimates the energy of wetting of a dielectric substrate by a conducting drop charged by
an external electric charge fixed on it. It was found that the wettability of such a surface decreases if the aver-
age density of the charge induced at the base of the droplet exceeds the threshold value.
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Fig. 1. Geometry of a three-phase system. S, solid; L, liq-
uid; G, gas.
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Wettability is of scientific and practical interest as
an object of research. The problem of wetting control
for various technical applications remains particularly
relevant. In electrowetting on a dielectric, the electric
field of the electrodes is used to increase its wettability
by a liquid [1]. The opposite effect—a decrease in wet-
tability—is observed when a conductive drop is placed
on a precharged dielectric substrate [2]. In this work,
the behavior of wettability under experimental condi-
tions [2] is studied based on the energy approach.

We consider the equilibrium axisymmetric state of
a conducting liquid droplet in a gas placed on a hori-
zontal solid dielectric substrate, uniformly charged by
an external electric charge with a known surface den-
sity σ0 fixed on its bounding plane (Fig. 1). In the elec-
tric field of this charge, physically homogeneous
phases become polarized. Therefore, the induced and
bound charges appear only at the boundaries separat-
ing them, which are approximated as infinitely thin
surfaces. The distribution of the total (external,
induced, and bound) charge on these surfaces based
on the Greenberg approach [3] is determined by the
system of integral equations

(1)

where σ is the surface charge density, ε is the dielectric
constant, E is the projection onto the normal (outer to
the droplet surface and opposite to the unit vector of
the z axis at the SG boundary) to the element of the
contact surface of the electric field vector generated by
all charges located outside this element, and ε0 is vac-
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uum permittivity. Here and below, the single subscript
denotes that the quantity belongs to the phase, while
the double subscript denotes that it belongs to the
interphase boundary (Fig. 1).

The stationary stable state of the considered system
occurs at the minimum of its energy W. The drop is
assumed to be small enough that the effect of
gravity on its shape can be discarded in comparison
with the effect of surface tension. W is, then, the sum
of surface Ws and electrical We energies:
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Here, α is the surface tension coefficient at the contact
interface with area A and ϕ is the scalar potential at the
location of the σdA charge.

Using the formulas σLG = , σSL = (σ0 +

 (where σi is the density of the induced charge of
the conductor at the boundary with the dielectric and

), total charge qL =  +

 on the droplet surface can be reduced to

(3)

Here, γ = −  is the ratio of the average
density of the charge induced at the base SL to
density σ0, taking into account the opposite signs of
these charges.

The problem of finding the shape of a drop that
provides a minimum W taking into account (1)–(3)
for given volume of liquid V can be solved only by
detailed numerical calculation due to the peculiarities
of the charge density and electric field on the three-
phase interface. Therefore, to estimate the wettability,
the problem is simplified. The meniscus of a small
drop is assumed to be spherical.

At V =  (R0 is the radius of a hemisphere
with volume V) the spherical segment is given by con-
tact angle θ (Fig. 1) in the known geometric formulas
for radii of curvature R = R0 f(θ), base r0 = Rsinθ, height

h = R(1 – cosθ), and areas ALG = 2πRh, ASL = π , where
f(θ) = [2/(2–3cosθ + cos3θ)]1/3. On an uncharged sub-
strate (σ0 = 0) minimizing Ws gives Young’s formula
[4]: αSG = αSL + αLGcosθY. The dimensionless variable

part of energy Ws with the scale  from the first
expression (2) can be written as follows:

(4)
Conductor potential ϕL is found by the average

potential method [5], the results of which agree with
the experimental data with an accuracy acceptable for
evaluating integral values. First, the potential from
charges at all interfaces is calculated at each point of
the droplet surface. For this, it is assumed that the dis-
tribution of the induced charge is uniform both on
boundary LG and on boundary SL. Since the average
density of the induced charge at the base of the droplet
is −γσ0, we obtain σSL = (1 – γ)σ0/εS. For the total charge
on the meniscus, we obtain σLG = (γσ0/εG)cos2(θ/2).
Density σSG is calculated by the corresponding for-
mula (1). The calculated potential is then averaged
over the droplet surface, and this mean surface poten-
tial is taken as ϕL. Such a calculation does not allow an
analytical result. Therefore, ϕL is found numerically.
The generatrix of the drop shape is composed of an arc
of a circle of radius R, which is cut out by central angle θ,
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and radius r0 of the drop base (Fig. 1). The arc is split into
N equal parts. When the arc is rotated around the axis of
symmetry, it forms charged coaxial circular bands, the
potential of each of which is identified with the known
field of the ring charge ΔqLG = σLG2πrnRθ/N passing
through the center of the band with coordinates (rn, zn):
rn = Rsinθn, zn = R(cosθn – cosθ), θn = θ(n – 0.5)/N, 1 ≤
n ≤ N. The surface charge at the base of the droplet is
approximated by a system of ring charges ΔqSL =
σSL2πrnR[sin(θn/N) – sin(θ(n – 1)/N)]. Likewise, at the
SG border, ΔqSG = σSG2πrm + 0.5(rm + 1 – rm), rm = r0 +
(5R0 – r0)m/M, 0 ≤ m ≤ M. Therefore, at an arbitrary point
(r, z), the potential has the form

(5)

where

and K is a complete elliptic integral of the first kind.
For averaging over the droplet surface, bypassing

singularity K(1) = ∞, using formula (5), we find ϕ at
points with coordinates rl = Rsinθl; zl = R(cosθl −
cosθ) (for the points of base zl = 0), where θl = θl/N,
0 ≤ l ≤ N, and the integrals for the mean potential ϕL =

 of the drop and the
second term of energy We (2) calculated by the trape-
zoidal rule.

Electric energy We, which is dimensionless with the
same scale as (4), is written in the form

(6)

where β =  is the ratio of characteristic
values of electric energy (with scales  for the
potential and  for the charge) and surface
energy.

The calculation is carried out at fixed values of εG = 1,
εS = 4, θY = 20°, close to the experimental data [2] for
a water drop on an amorphous silicon dioxide film,
and parameters γ and β are varied. Note that the
expression for parameter γ of the model can be found
for a hemispherical drop. Since the electric field at the
base of a uniformly charged hemisphere is uniform
and equal to σLG/4ε0, it follows from (1) that σSL =
σLG/2, which gives γ = 1/(1 + 0.25εS/εG).

For a fixed value of β = 0.1, there is threshold value
γ ≈ 0.35, below which the energy minimum point prac-
tically coincides with the given Young angle (Fig. 2).
When the threshold value is exceeded, contact angle θ
increases (circles in Fig. 2) and, for γ → 1, reaches 52°.
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Fig. 2. Dependences of (1) energy , (2) total energy
, and (4, 5) its terms in formula (6), as well as (3)  +
, on the contact angle at β = 0.1, γ = 0.5. Asterisks indi-

cate the minima of We at γ = 0.36, 0.4, and further to 1 with

a step of 0.1; circles indicate the minima of  +  at γ
from 0.3 to 1 with a step of 0.1.
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The threshold value of γ separates monotonic and
nonmonotonic dependences (θ), the minima of
which (asterisks in Fig. 2) depend only on γ. The min-
ima themselves are due to the opposite nature of the
change in terms  in (6) (lines 4 and 5 in Fig. 2).
At fixed γ, with increasing β, as the contribution of 
to the system energy profile decreases, contact angle θ
increases monotonously and, at  ≫ , reaches
saturation at points of minimum , that do not
depend on θY. In Fig. 2 this corresponds to moving any
of the circles to the corresponding asterisk at β → ∞.
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The physical explanation of the calculated increase
in the contact angle follows from the equivalence of
the effect of the electric charge at the interface and a
decrease in the surface tension. In electrowetting, the
charge is predominantly located at the SL boundary,
which leads to a decrease in αSL and an increase in
wettability. In the considered case, there is a charge at
all interphase boundaries. Near the three-phase inter-
face, where ESG(σLG) ≈ ESL(σLG), it follows from (1)
that

Therefore, αSG decreases more than αSL. As a result,
the tension balance is fulfilled on a smaller wetting
perimeter with a larger contact angle, regardless of the
changing αLG at θ ≤ 90°. This behavior of wettability of
a charged dielectric substrate by a conducting drop is
in qualitative agreement with what was experimentally
observed in [2].

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES
1. F. Mugele and J. Heikenfeld, Electrowetting: Funda-

mental Principles and Practical Applications (Wiley-
VCH, Weinheim, 2018), p. 133.

2. D. Aronov, M. Molotskii, and G. Rosenman, Appl.
Phys. Lett. 90, 104104 (2007). 
https://doi.org/10.1063/1.2711656

3. G. A. Grinberg, Selected Questions of the Mathematical
Theory of Electrical and Magnetic Phenomena (Akad.
Nauk SSSR, Moscow, 1948), p. 255 [in Russian].

4. B. D. Summ and Yu. V. Goryunov, Physicochemical
Bases of Wetting and Spreading (Khimiya, Moscow,
1976), p. 15 [in Russian].

5. Yu. Ya. Iossel’, E. S. Kochanov, and M. G. Strunskii,
Calculation of Electrical Capacity (Energoizdat, Lenin-
grad, 1981), p. 24 [in Russian].

Translated by L. Trubitsyna

σ σ = + γ − γ + ε ε + ε ε >/ [(1 )/(1 ) / ]/(1 / ) 1.SG SL G S G S
NICAL PHYSICS LETTERS  Vol. 47  No. 12  2021


	REFERENCES

		2022-03-17T12:04:25+0300
	Preflight Ticket Signature




