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Abstract—Equations for the cross section and polarization of the coherent bremsstrahlung emitted by relativ-
istic electrons and positrons in crystals are obtained taking into account the contribution from the second-order
Born approximation. The radiation cross section and polarization in the field of the atomic plane is considered

as a function of the charge sign of the particle.

INTRODUCTION

When relativistic electrons move in a crystal at a
small angle to a certain crystal axis or plane, coherent
effects appear in bremsstrahlung [1-3]. As a result of
these effects, the radiation cross section of electrons in
the crystal can substantially exceed the corresponding
cross section in an amorphous medium. The frequency
range in which these effects take place grows rapidly
with the electron energy, and, at sufficiently high
energy, it becomes necessary to take into account the
recoil effect of radiation. There are several methods for
describing the process of radiation of relativistic elec-
trons taking into account the recoil effect. These meth-
ods are based on Born approximation and various ver-
sions of the quasi-classical approximation of quantum
electrodynamics [3—8]. The radiation cross section as a
function of the sign of the particle charge is of special
interest. This dependence appears when the contribu-
tion of higher orders of perturbation theory with respect
to the interaction of the particle with the external field
is taken into account. Therefore, it is very important to
analyze this process in order to determine the domain of
applicability of various approximate methods used for
description of radiation of fast particles in an external
field.

The dependence of the radiation cross section on the
sign of the particle charge in the case of radiation of
high-energy electrons and positrons on an isolated atom
is rather slight [9]. However, the situation is different in
the case of coherent interaction of relativistic particles
with the atoms of a crystal lattice. As a result of the
coherent effects, the dependence of the radiation cross
section on the sign of the particle charge can become
substantially stronger as compared to the same depen-

dence in an amorphous medium. The authors of [10]
first paid attention to this fact. They considered the con-
tribution of the second-order Born approximation to the
cross section of the coherent bremsstrahlung of relativis-
tic electrons in the field of an atomic plane of a crystal.

The results in [10] are obtained for low frequencies
of emitted photons, for which the recoil effect of radia-
tion can be neglected. This paper gives some results of
the investigation of contribution of the second-order
Born approximation to the coherent radiation of relativ-
istic electrons and positrons in a crystal taking into
account the recoil effect of radiation. The equations are
derived describing the cross section and polarization of
the radiation of particles in an inhomogeneous station-
ary electric field of an arbitrary structure. The depen-
dence of the cross section and polarization of the coher-
ent radiation in the crystal on the particle charge sign is
considered on the basis of these equations. In this paper
we use the system of units in which the velocity of light
¢ and Planck’s constant # are taken equal to unity.

TECHNIQUE

The cross section of the bremsstrahlung in the exter-
nal field is described by the equation [9]
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where e is the electron charge, (g, p) and (¢, p') are the
energy and momentum of the initial and final particles,
o and k are the frequency and wave vector of the emit-
ted photon, 8(e — &' — w) is delta-function expressing the
energy conservation law in radiation, and M is the
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After summation over polarizations of the final par-
ticles and averaging over polarizations of the initial par-

ticle, we obtain the following expressions for |M;|> and

M, M?¥ in the order of m*/e”:
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Substituting these expressions into (1), after inte-

grating over y and expanding into a series of g,/m, we
obtain the following equation for the radiation cross

section with allowance for the contribution of the sec-
ond-order Born approximation:
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Let us consider some special cases of (12). If & <
Gy Where g is the characteristic value of the longi-
tudinal component of momentum q in (12), we can
neglect the fact that U, and U, _, depend on g, in (12).
After integrating over g, we see that, in the order of
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For @ < ¢, Eq. (14) corresponds to the product of the
radiation probability dw/dw and the elastic scattering
cross section of the particle in the external field do,,
with allowance for the contribution of the second-order
Born approximation
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In the case of the Coulomb field of a nucleus with a
charge Zle|, the latter equation becomes as follows:
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where the scattering angle © = g,/p. This result coin-
cides with the corresponding result [14] obtained by a
different method. The equation for do,; in an arbitrary
external field is obtained in [15].

Therefore, in the frequency range o ~ €, the factor-
ization theorem for the radiation cross section stating
that

do=dw(g,)do,(g,) (16)

is valid only to the error governed by the contribution
of the second-order Born approximation.

COHERENT RADIATION OF RELATIVISTIC
ELECTRONS AND POSITRONS IN A CRYSTAL

Now, let us consider the coherent radiation of elec-
trons and positrons in the continuous potential field of
an atomic plane in a crystal when the beam is incident
on this plane at a small angle 0. The interaction energy
of the particle with a continuous potential of a plane is
given by the relationship [12, 13]

U(x) = L Ljdydzz u(r—r,). (17)

n=1

Here, u(r — r,) is the potential energy of interaction
with an individual atom of a plane located in the point
r,, L,and L are the dimensions of the atomic plane, and
x is the coordinate along the normal to the atomic plane
of the crystal (summation in (17) is performed over all
N atoms constituting the crystal plane). Choosing the
potential of an individual atom as a screened Coulomb
potential so that

where R is the Thomas—Fermi radius, we find that the
Fourier component of the potential energy (17) is
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where a, and a, are the distances along the y and z axes
between the atoms constituting the plane and
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Substituting the Fourier component (18) into (12), we

obtain the following expression for the radiation cross
section:

8

N ¢ 8 dwdg, 1

aya .y’ ® 97 (o2 4 g2’

2
® ) )
X{[l " 2ee _2gx9(1 - _eﬂ

£4nZe2R G+R’
el ea,a.0°gi+ 4R

2
W ) )
1+ —-2 1-
% [ * 2¢e gxe( gxe)

) |

Here, we used the fact that in this case g, = 0g,. There-
fore, g, here assumes the values g, = 0/0. At ® < g,
Eq. (19) is transformed to the corresponding result
obtained in [10].

We can see that the relative contribution of the sec-
ond-order Born approximation to the cross section of
the coherent bremsstrahlung in the field of an atomic
plane (together with the dependence of the cross sec-
tion on the sign of the particle charge) is governed by
the parameter
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where a is the average distance between the atoms in
the crystal plane. It is obvious that the Born expansion

of the radiation cross section is valid at o, < 1. The
parameter o, is of the same order as the ratio of the
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[11] to the square angle of the beam incidence 6 onto
the plane:

o, ~ 0,/6". 1)

o, rapidly grows as 8 decreases. Therefore, Eq. (19) is
valid at

0, <0 <1. (22)

At o, ~ 1, one should take into account channeling
effects and over-barrier movement of the particles rela-
tive to the atomic plane [3, 12, 13] and the Born approx-
imation becomes inapplicable.

Equation (19) also shows that, for all frequencies,
the radiation cross section of positrons is greater than
the radiation cross section of electrons. This result can
be intuitively explained. An electron is attracted to the
atomic plane and, unlike a positron, spends less time in
the domain with a large potential gradient. As a result,
the electron emits more weakly than the positron, and
this difference becomes stronger as angle 6 decreases.

The bremsstrahlung cross section in the crystal is
governed by the following relationship [3]:

dc = N(dGcoh+dGincoh)’

where N is the total number of atoms in the crystal,
dc o, i the coherent part of the radiation cross section
resulting from the radiation interference on the atoms
located periodically in the crystal, and dc;,, is the
incoherent part caused by the thermal variations in the
atom locations in the crystal. The cross section of the
incoherent radiation does not depend on the crystal
alignment relative to the particle momentum and only
slightly (by 5-25% at room temperature) differs from
the Bethe—Heitler radiation cross section of a particle
on an isolated atom [3].

In the case of interaction of the particle with a set of
parallel atomic planes in the crystal, the expression for

dG, o, i Obtained by summing over (g,), = Z_n n instead
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of integrating over dg, in (19):
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where a, is the distance between the atomic planes. Fig-
ure 2 shows the radiation cross sections of electrons and
positrons with the energy of 1 GeV that are incident on
a silicon crystal at an angle 6 = 4 x 10~ rad to the (110)
plane. Angle 6 is chosen so that the parameter (20) is
large enough, but condition (22) is still met. We can see
that the difference in the radiation cross sections of
electrons and positrons near coherent maxima reaches
10-15%.

The simplifications obtained in deriving (9) make it
possible to find the contribution of the second-order
Born approximation to the polarization of the particle
bremsstrahlung in the external field. It turned out [1]
that the radiation of a beam of nonpolarized electrons in
a field lacking spherical symmetry, such as the field of
an atomic plane in a crystal, exhibits nonzero plane
polarization. The degree of the plane polarization of
radiation is, by definition, the ratio of the difference of
cross sections of the radiation polarized in the direc-
tions specified by two mutually perpendicular polariza-
tion vectors to their sum:
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Choosing the polarization vectors as






tions when particle channeling in the crystal takes
place. It was shown that, in this case, the radiation cross
sections of electrons and positrons differ substantially.
There were no detailed experimental studies of the
dependence of the radiation cross section on the charge
sign when (19) is applicable. Only several measure-
ments of the orientation dependence of the radiation
cross sections of electrons and positrons under radia-
tion collimation are available [17, 18]. The results of
these measurements are in qualitative agreement with
most predictions of Eq. (19).
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