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Introduction

The purpose of this note is to study the problem of classification of quasihomogeneous Saito free
divisors making use of deformation theory of varieties with G,,-action. In particular, we describe
an approach for computation of free deformations of quasicones over quasismooth varieties. We
also discuss some useful applications in a more general context. Among other things we show
that from quite a general point of view in the theory of isolated singularities Saito free divisors
play a role of stable curves of the classical theory of compactification of the moduli space for
curves of given genus.

In the first section a brief survey of classification methods and techmique is given. In the
next three sections basic uotions and results from the deformation theory of varieties with G,,-
action are described. Then we discuss the notion of Saito singularities, their basic properties
and relations with problems of classification of non-isolated hypersurface singularities and
compactification of flat families. deformations of isolated singularities. Some computational
examples. problems and applications are also considered including computation of freeness
locus for deformations of certain simple and unimodal singularities.

The paper clarifies the construction of a series examples of Saito free divisors in 3-dimensional
case recently produced by J.Sekiguchi (see [19], [20], [21]). In contrast with our methods his
approach is based essentially on the classification of Lie algebras formed by logarithmic vector
fields tangent to a hvpersurface.

1 Methods of classification, enumeration and deformations

Many problems concerning classification and enumeration of singularities are closely related
with different aspects of the modern singularity theory. In general, one may counsider different
equivalence relations between singularities such as the right equivalence (change of coordinates
in the source of defining mapping), contact equivalence (change of coordinates and multiplication
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with a unit. that is. preserving the isomorphism class of the corresponding germ). and others.
Anyway the initial stage of the solving of classification problems is a deseription of simple
singularities. As a rule. one can write out a finite or at least pereeptible list of normal forms or
similar data. However a scheme of classification of more complicated isolated singularities seems
to be a rather nontrivial and hard problem since such phenomenon as moduli or parametrie
families may oceur. Furthermore, essential and serious difficulties arise in the theory of non-
isolated singularities. Among different approaches to further classification it seems methods
of the deformation theory are very fruitful and useful. The following ohservation is also very
important: some types of non-isolated singularities appear as degenerate fibers in parametric
families or deformations of isolated singularities, other ones (for example, divisors with normal
crossing) are natural ingredients of compactifications of algebraic varieties in the Hodge theory
and in related questions, and so on.

Historically, the theory of singularities originated in studies of quasihomogeneous functions
with isolated critical points or, in other terms, hypersurfaces with isolated singularities given by
quasihomogeneous functions. Unfortunately, in contrast with the theory of isolated singularities
the type of homogeneity in non-isolated case does not determine neither topological nor analy-
tical structure of singularities. Moreover, there are types of homogeneity associated with non-
isolated singularities that can not be realized as tvpes of isolated singularities at all.

In fact, there is a natural approach to the problem of classification of all objects of some given
type. If one can organize them into families which are. in some extended seuse. "continous and
then determine how uearby objects are related, their basic properties become more understan-
dable and clearly expressed. The idea of contimous families or, in other words deformations,
of abstract objects goes back at least to B.Riemann who found that the isomorphism classes
of Riemann surfaces of genus ¢ > 0 form a single coutinuous, almost everywhere analytic,
complex family. Its complex dimension. called by B.Riemaun "the number of moduliis given
by the Riemann-Roch theorem and is equal to 1 for g = 1 and 39 — 3 for g > 1.

There are few different ways of looking at the problem of classification or enumeration; they
occur naturally in the context of the deformation theory. Thus in order to classify non-isolated
singularities one can endeavor to create a list of them ordered by some rules or numerical
invariauts: AMilnor numbers, types of homogeneity, weights of variables or vector fields, ete.
It is also very important to choose a suitable representation for members of the list. In the
standard theory one usnally takes generators of the defining ideal, funections or polynomials, in
other terms, normal forms of singularities (see [9]. [1]). However in the non-isolated case any
classification depends on types of singular loci of singularities themselves. So it is necessary to
analvze singular loci. Further, it is possible to classify all pairs of singular hiypersurfaces and
their singular loci. Another way is to obtain a classification of local algebras associated with
singularities, Lie algebras of differentiations (see [21]), and so on.

2 Singularities with G,,-action

Let k& be a field of characteristic zero, and let P, = k-[zl ..... zn] be the polynomial algebra
graded as follows: deg(z;)) = w; € Zso 7= L., n. Then P(w) = Proj(F,) is called the
weighted projective space of type w = (w1... .. wy ). For brevity, let us set P = P(1....,1) and,

similarly, P = P(L.....1). It should be underlined that weighted projective spaces are toric

varieties.
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Let X be a closed subscheme of a weighted projective space F(w). Denote by U = A"—{0} =
Spec(P) —m, m = (z1,..., 2y ), and let p: U — P(w) be the canonical projection. The scheme
closure Cy of p7'(X) C A™ is called the affine quasicone over X. The point () € Cx is called
the vertex of Cy.

Let G,, be the group k™ of units of the ground field & under multiplication. An affine
algebraic variety V' over k is called the quasicone if there is an effective action of G, on V such
that the intersection of the closures of all orbits is a closed point, the vertex of the quasicone.
It is well-known that any affine quasicone is a quasicone. Conversely, any quasicone without
embedded components in its vertex is an affine quasicone Cx for some X C P(w) (cf. [10]).

Deuote by .J the defining ideal of X in P(w) aud by I C P the ideal of Cy in A" In the
ordinary projective case (that is, w = (1..... 1)) we have

12 HU,p"(J) 8op Ov) = S,e2H(U.p*(J) ®os Oy (v)).

In particular, the ideal I is homogeneous. By aunalogy. it is possible to prove that for an
arbitrary quasicone V' there is a closed embedding ¢: V' — A™ such that the ideal of (V')
is generated by weighted homogeneous polynomials with integer positive weights (ealled, for
brevity, homogeneous elements of the graded ring P(w)).

Closed subvarieties in weighted projective spaces are called affine isowmorphic if their affine
quasicones are isomorphic; they are called projectively isomorphic if their quasicones are G,,-
isomorphie.

3 Deformations of weighted hypersurfaces and quasicones

A closed subscheme X C P(w) is called quasismooth if the corresponding affine quasicone
Yy = Cx, is smooth outside its vertex, that is. ¥;; has an isolated singularity at the vertex. In
particular, a quasismooth variety as well as its affine quasicone are reduced schemes.

It is well-known that in quasismooth case the Gp-action on Y can be extended to the
minimal versal deformation. Moreover, the space of infinitesimal deformations of the first order
Tl(}fa] is endowed with a natural grading Tl = %pele(Yh) . Of course, T? is finite-dimensional
over the ground field. its dimension is called the Tjurina nmumber of the singularity: it is denoted
by .

Below we restrict ourselves to the case when Xj is a quasismooth hypersurface. Thus the
ideal I of C'x,, is generated by a homogeneous element f € P{w). that is, by a quasihomogeneous
polynomial in P, so that g € G,, takes f to ¢%f for some d € Z_. called the degree or weight of
f. The collection (d; wy, ..., w,) s called the type of weighted singularity X or its quasicone
Yy it is denoted by 7. Choose also a homogeneous (monomial) basis ox € THYy)u,. o €
P E=1enny 7. and set R = E[[t;.....t.]]. § = Spec(R). Then the minimal versal deformation
¢: Y — S of the singularity Y5 is defined by the element F = f+ti01+...~t-0- € R[zl ..... zﬂ]._
so that ;. has weight —ug under the natural action of G,,.

Now one can projectivize the fibers of the versal deformation without projectivization of
its base substituting #,27" for #; in F (ef. [15]. (13.3)). Denote the polynomial so obtained
by F. Then the quotient ring A = Rz, ..., zn)/(F) is a graded k-algebra in z,.... 2, alone
with z3,:... zx having the same weights w; as before and 2y having weight 1. In the case when
-y z0forali=1,..., 7, that is, C'y, has negative grading in the sense of [13] the morphism

©: Y = Proj(A) — S is flat and proper with fibers reduced projective curves (cf. [loc. cite],
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(13.4)). All the fibers of the flat morphism ¢ (as well as ¢) a given G,,-orbit of § are isomorphic.
Of course,  is not, in general, versal or minimal versal.

Remark. One can often take the weight of new variable zy equals not only to 1, but to
any positive (or even non-positive) integer. In general it gives different projectivizations and
families of singularities.

Let 7 be the open subset of § consisting of all the points s € § such that fibers Y5 of the
deformation ¢: ¥ — § are smooth. Then U is G,,-invariant as well as its complement D = S\ [/,
called the discriminant of the deformation ¢. It is well-known that for the minimal versal
deformation of a hypersurface isolated singularity the diseriminant D is reduced and defined
by a principal ideal in the base ring F. So one can choose its generator as a quasilhiomogeneous
polynomial h € R without multiple factors. When ¢ is not minimal versal then D may have
multiple components. Ou the other hand, points of U7 correspond nawmely to fibers of the flat
mapping . which are reduced smooth projective curves, while all the fibers © over D are
singular.

Of course. this construction can be applied to deformations of Y} associated with arbitrary
colleetions of monomials o; of T!(Y;). When the family ¢ is the minimal versal deformation then
U as well as D are non-empty sets. [n general, U may be empty while D is always nou-empty
because the diseriminant contains the origin.

4 Weighted plane curves

It is well-known that a quasismooth hypersurface Xy of type @ = (d; wo. wi. we2) in a weighted
projective plane is a smooth projective curve (see [10]); its affine quasicone ¥j has an isolated
singularity at the origin given by a weighted-homogeneous polynomial of degree d. Set ¢ =
d —wy — wy — we. so that —c is equal to the weight of a generator of Grothendieck dualizing
module in virtue of the canonical isomorphism wy, = Oy, (dz/df). In fact, ¢ is nothing but the
degree of canonical class of the projective curve X, Then any weighted plane curve with ¢ < 0
is affine isomorphic to one of curves with simple elliptic singularities of types Ay, Dy, By, E;. Es.
A weighted plaue curve with ¢ = () is projectively isomorphic to one of three types of weighted
curves with parabolic singularities Py, Xy, Jiy. Furthermore, there are ouly 31 non-isomorphic
weighted plane curves with ¢ = 1 (see Table (5.5) in [2]). Moreover, it is possible to prove that
for any fixed ¢ there is only a finite number of collections (d; wy, wy, wy) for which there exists
a smooth weighted plane curve of the same type 7 (cf. [10]).

Let us illustrate the construction from the previous section by concrete examples of quasicones
over isolated singularities. First, let Y} be a simple 4;-singularity. Set z; =y, 2o = z. Then ¥}
is defined by f = y® + 22, and T(Yy) = k(1) is generated by the unit of k. Let us consider the
principal deformation F = 32 +22+¢t, t € k. The diseriminant of the deformation consists of one
point, the origin, its defining equation is £ = (). There are many different ways to projectivize
fibers. For example, one gets two flat mappings p associated with polynomials F; = tz+y? + 22
and F, = to? + y? + 2%, where = = 2, has weight equals to 2 and 1, respectively; and so on. In
the first case quasicones over fibers Y, for all ¢ # 0 are isomorphic to a iyperplane. While in the
second case all the fibers YV, of the deformation  are isomorphic to a smooth rational projective
curve, the projectivization of the Milnor fiber of the deformation. In this case the quasicones
over Yy are isomorplic to an ordinary cone having a normal singularity at the origin. In both
cases the quasicones over the fiher ¥, are isomorphic to a two-dimensional linear non-isolated
singularity of type As.
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Similarly, in the case of an A,-singularity we have f = y* + 2°, the space T' = k(L. z2)
is generated by two monomials. As before one can consider two different projectivizations:
Fi=yP+2 e+ 2% and Fy = 4% + 2% + tozz + t122, where ¢, € k. In both cases
the discriminant D is defined as zero set of the function h = 27# + 4#3. Further. all the fibers
of ¢ over U are smooth curves and their guasicones have isolated singularity at the origin,
they are normal varieties. Fibers over the discriminant D are singular, their quasicones are
two-dimensional affine hypersurfaces with non-isolated singularities.

5 Saito free divisors and non-isolated Saito singularities

Let S be the germ of a complex manifold of dimension m, and let D C § be a reduced
Liypersurface defined by h € Og. Following K.Saito [16], we denote the Og-module of vector
fields logarithmic along D C S by Derg(log D). This module consists of germs of holomorphic
vector fields V' € Der(Qg) on § such that V(L) belongs to the principal ideal (h)-Og. The
Liypersurface D C § is called Saito free divisor if the module of germs of logarithmic vector
fields Derg(log D) is a free Og-module (cf. [11]).

It should be remarked that the singular locus of a Saito divisor has codimension one; in
other words, this hypersurface has non-normal singularities (see [5]). The following statement
is due to K.Saito [16]. it gives a criterion of freeness for reduced hypersurfaces.

Proposition 1 (Saito’s Criterion) The Ogy-module Dergy(log D) is free if and only if there
are m germs of logarithmic vector fields V', ..., V™! € Dersg(log D) such that the determinant
of the m x m-matriz V = ||vy|| whose entries are the coefficients of VE, i =0.....m — 1, is

equal to ah, where o is a unit. These vector fields form a basis of Dergy(log D).

For example, Derg(log D) as well as its Og-dual Qk(log D), the module of logarithunic
differential forms with poles along D, are locally free if D is a hyperplane, a plane curve or a
divisor with strict normal crossings. In the latter case a defining equation of D can be written
ash =z -+ z; = 0. where & < m. It is not difficult to verify that Q(log D) = Q%[log D]. where

d d
Olflog D] = 05<i ..... el dzkﬂ._....dzm>.
21 2L

Further, the discriminants of the minimal versal deformations of isolated hypersurface or
complete intersection singularities are Saito free divisors (see [16]. [5]).

In the local situation the germ of a Saito free divisor D is called the Saito singularity.
However, it is often more convenient to exclude trivial cases of hyperplanes or smooth hypersur-
faces since they have no singularities at all. The following statement [3] can be considered as
an improvement of Saito’s Criterion.

Proposition 2 (Determinantal Criterion) The Ogg-module Dergy(log D) is free if and on-
Iy if there are m germs of logarithmic vector fields VY, ... . V™' such that Vi(h) = g;-h.
g €05 1i=0,..., m — 1, and such that mazimal minors of the m x (m + 1)-matriz formed
by the column (gu.....gm-1)T and m columns of the matriz V = | vy are equal to b and
to its partial derivatives up to invertible factors from O%. These vector fields form a basis of

DEI‘S‘_{] IL log D ) :
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The next proposition [3] delivers a purely algebraic characterization of Saito free divisors
and their singularities.

Proposition 3 (CM-Criterion) Let Z = Sing D be the subgermn of D defined by the Jacobi
ideal J(h) = > (0h/02)0p of the function h. Suppose that codim (Z.D) = 1. Then the
following conditions are equivalent:

1) D is a Saito singularity:

2) Z is a determinantal germ;

3) Z is a Cohen-Macaulay germ.

Recall (see [3]) that a singularity (D. z) is called Euler-homogeneous (or, equivalently, E-
homogeneous) if there is a vector field E € Derg(log D) such that E(h) = gh, where the function
h is a local equation of D and g € 0% is invertible. In particular. every weighted homogeneous
singularity is E-homogeneous. Of course, the conversion is not true.

Let M = {V & Ders(logD): V(h) = 0} be a Lie subalgebra of Ders(log D). Elements
of 9 are called nilfields (see [4]) or trivial vector fields (see [6]). Then coefficients of an
arbitrary vector fleld V' € 91 define a relation or syzygy of the first order between partial
derivatives of the function h and vice versa. All such relations generate an Og-module naturally
isomorphic to the module Z,(dh) of l-cyeles of the usual Koszul complex K, (dh) generated
by the partial derivatives of k. In general, there are non-trivial relations between generators
of Z,(dh) represented by syzvgies of the second order. They generate Og-module Zy(dh). and
so on. As a result we obtain the following statement which can be considered as a criterion of
freeness for E-homogeneous singularity.

Proposition 4 (Syzygy Criterion) Let D be an E-homogeneous Saito singularity. Then
there is the following splitting into the direct sum of Og-modules:

Ders(log D) = Og(E) & M,
where M = Z1(dh) is free. In particular, all syzygies Z;(dh), i > 2, of higher orders are trivial.

Proof. The condition of E-homogeneity gives us the relation Eh = gh. g € 0%. Take V €
Derg(log D). Then V(h) = 6h, 8 € Qg. This implies V — g='6E € N, that is, the splitting
required. The freeness of Z;(dh) follows from definition of Saito singularity (cf. [22], [3]).

In other words, obstructions for freeness of a non-normal hvpersurface singularity can be
considered as a triviality condition of the second Koszul cohomology Zo(dh).

The above Determinantal Criterion can he reformulated in the E-homogeneous case as

follows (see [3]).

Proposition 5 (E-determinantal Criterion) Let D be an E-homogeneous singularity. Then
D is a Saito singularity if and only if there erist m — 1 germs of logarithmic vector fields
V3i.... V™! ¢ Dergg(log D), Vi(h) =0, i =1,..., m — 1, such that mazimal minors of the
(m — 1) x m-matriz V = || vyl are equal to partial derivatives of h up to sign. These (m — 1)
vector fields form a basis of the free submodule M C Dergp(log D).

There are also other criteria in terms of Lie algebra of logarithmic vector fields in three-
dimensional weighted homogeneous case due to J.Sekiguchi (see [19], [20]. [21]): they are
based on the classification of Lie algebras formed by logarithinic vector fields tangent to a
hypersurface, properties of the fundamental antiinvariants of finite reflection groups, etc.
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6 Locus and stratum of freeness

Now we are going to apply the construction of projectivization of fibers in order to show how
Saito singularities appear in flat families. The following results are typical for the case ¢ < (),
that is. for simple singularities. Thus, in notations of section 4 among different projectivizations
for an A;-singularity one can consider the flat mapping  associated with polynomial F; =
tz+y?+ 22 In this case for all ¢ # 0 the corresponding quasicones are isomorphic to a Saito free
divisor (more exactly, to a hyperplane) due to Saito’s criterion of freeness with the following
data:

2r oy z
V=|y —£/2 0 . det(V) = t(tz + % + 22) /2.
2 0 —t/2

When ¢ = 0 the corresponding quasicone is isomorphic to the direct product of z-line and a
plane quadric, that is, it is a Saito singularity.

This example leads to the following definition. In notations of section 4 let us consider the
deformation ¢: ¥ — § of the singularity ¥} and its projectivization ¢¥: ¥ — § obtained with
the help of the variable z; whose weight is equal to an integer v € Z.

Definition 1. Let us denote by L,(Y) the subset of the diseriminant D C S of the
deformation ¢* cousisting of all the points & € D such that the guasicones over the fibers
Y, have Saito singularities. Then L£,(Y}) is called the locus of freeness of the deformation .

Of course, in a similar manner the locus of freeness is defined in a more general situation,
without the assumption on quasihomogeneity. Criteria from section 5 implies that the locus
of freeness is, n fact. a closed set. In particular, one obtaius that dimL,(A4;) = 0 for all
v # 2, since the locus of freeness consists of one point {0}. However, it is possible to show that
in general the locus of freeness is not an equidimensional set, it may contain components of
different dimensions. As a result oue can pose the following question:

Problem 1. How one can compute the locus of freeness L£,(Y)) for a given singularity 7

In fact, it is possible to give a natural deseription of the locus of freeness in terms of the
so-called flattening straturn (cf. [8]). Thus, let us take an embedding Cy — C™™!' x § —
S associated with the deformation ¢: Cy — 5 induced by the mapping of projectivization
p: Y — S, obtained with the help of the variable z; whose weight is equal to an integer v € Z
in the notations of section 2. Set further IT = C"*! x §. Then the defining ideal of C = Cy is
generated by one function, say F € Op.

Let QL . be the Op-module of relative Kihler differentials and let Derg(I1/S) be the module
of relative vector felds on T over S, Derc(I1/5) = HUI“OH(QII'[;'S‘ Om).

Let us consider a coherent Op-module Derpys(log C/S) of relative logarithmic vector fields
cousisting of the elements v € Derg(I1/S) such that v(F) C (F)Qp. In fact. v induces vector
fields on each fibers C; tangent at their non-singular points. In other words, v induces the
vertical vector field T € T%(C/S, O¢) on the total space of the deformation 1.

The above definition of the locus of freeness implies that £,(Y;) C § is the maximal locally
closed subspace consisting of those points s € S such that the restriction
Derps(log C/S)|pner(,, 18 & locally free Ogn-:1-module.

It should be remarked that the locus of freeness one can determine making use of a slightly
modified algorithm for computation of flattening stratum (see [8]). The original algorithm
generalizing Massey product computations was implemented in SINGULAR language [12]; it
was used in computing of the modular stratum. a very interesting and important object in the
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deformation theory. As a result one can produce the following definition in a rather general
context.

Definition 2. Let ¢': X — § be a flat deformation of a hypersurface singularity Xj. and let
X — II=C"" x § be the corresponding embedding of the total deformation space. Then the
intersection of the discriminant D C § of the deformation and the image of the projection of
the flattening stratum associated with the sheaf of Op-modules Derp s(log X/5) on the second
factor of II is called the stratum of freeness of the deformation .

In fact, the computational procedure of the above mentioned algorithm gives us explicit
equations for the stratum, that is, this stratum is endowed by a non-trivial structure sheaf. In
general, the stratum of freeness contains singularities, it may be non-reduced, ete.

Thus, in the above notatious for conic singularities the image of the projection on the
second factor of IT of the flattening stratum associated with Derpyys(log X/S) gives us the locus
of freeness L,(Y}) for the deformation v of the quasicone Xj; = Cw,; u fact, it is the reduced
part of the stratum of freeness, its "sous-jacent."”

For completeness it should be noted that there are other methods for computation of locus
of freeness based on criteria from section 5. However, an experience shows that they require
highly difficult caleulations (cf. [8]).

7 Degeneration and compactification of deformations

Now let us discuss another situation when Saito free divisors and their non-isolated singularities
closely related with properties of deformations of isolated singularities. In fact. there are
many types of isolated critical points of functions or, equivalently, isolated singularities of
hypersurfaces which can be deformed to non-isolated ones. The corresponding values of para-
meters of the family are defined by conditions of degeneracy, the associated fibers are called
degenerate fibers of the deformation (cf. [9]). In general, it is very interesting to understand
properties of degenerate fibers of flat families (ef. [15], (14.11)). We show below that sometimes
such fibers are nothing but non-isolated Saito singularities. We call the corresponding family
free deformation of the singularity.

Oun the other hand, any non-isolated hypersurface singularity can be deformed to isolated
one: we can add some additional monomials to its defining equation which are defined by
conditions of non-degeneracy for functions (some types of such conditions have been deseribed
by [16]. [9]. [1]. [2]. ete.). Of course. if a non-isolated singularity is weighted homogeneous
and one wants to keep the grading up to a (multiple) common factor then the task is more
complicated and occasionally becomes in an intractable problem.

Remark. It should be also underlined that in contrast with the theory of isolated singula-
rities the type of homogeneity 7 in noun-isolated case does not determine in general either
topological or analytical structure of a singularity. Moreover, there are types of homogeneity
that can not be realized as types of isolated singularities at all. However if we analyze non-
isolated Saito singularities then the type of homogeneity together with weights of basis logarith-
mic vector fields determine basic properties of the associated local ring, the local cohomology
of the De Rham complex, the structure of the Lie algebra of vector fields tangent to the
hypersurface, Milnor muubers, and so on (see [4]).

Further when one coustructs a deformation over an affine base space then an initial non-
isolated singularity can be often included in a flat family as a fiber at infinity, the corresponding
value of parameters defines a point at infinity of compactification of the base space of the family.
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4) L L 2P — 3Py

The degenerate fiber of the second family Fj with b = —1/27 is isomorphic to the fourth
singularity. Here we observe an interesting phenomenon closely related with the theory of
compactification of modular spaces or deformations (see details in [7]). In fact, a clear description
of modular spaces is given by collections of charts or finite coverings. that is, by a collection
of proper multivalent mappings ¢y 1 V — M, where M is the maximal modular deformation,
m = dim M, and V' C C™ are open subsets. It is well-known that Py-singularity is unimodular,
that is, m = 1 (cf. [loc. cite]). Set V' = C'. Then the family Py is given by the mapping
f:+ X — V such that any fiber X, C C®, a € V. is given by the equation z®+y*+2* +azyz = 0.
Let us define a chart v : V — CP by pv(a) = a®. The chart py covers the Riemann sphere
CF, except for oo. It may be covered by another chart. To see this, let us consider the second
family br® +3* + 2% +zyz, b € W = C'\ {0}. Then pw: W — CP, defined by ow(b) = 1/b, will
be the desirable chart. Besides @y maps to oo the fiber of the family over b = (0. It is not difficult
to verify that both charts are glued along i (N) and i} (V). where N = v (V) N pw (),
to the sphere CP. In fact, the gluing isomorphism is given by the formula o* = 1/.

Asg a result the Riemann sphere CF is covered by two charts oy, . containing non-isolated
singularities defined above. Thus, the following question arises:

Problem 4. (ef. [14]. Problem 4.4). Does there exist a collection of charts corresponding to
fat families of isolated singularities that covers all the points of CF 7

Counsiderations described above lead to a slightly different version of this problem:

Problem 4. Does there exist such compactification of modular deformations by means
of fat families of isolated aud non-isolated singularities of certain type or types (e.g. Saito
singularities).

The above computation gives us some information on the locus of freeness for deformations
of the quasicone over a Dy-gsingularity. In fact, it is not difficult to verify that germs 2) - 4)
satisfy Saito’s Criterion in view of the following representation of the corresponding data by

symmetric matrices:

G TS T ® Tz oy z
Vi=|ly z |, Vo={|y =z |, Va=|y #z —jz
7 &y ZE Ty z —jz Fu

where det(V;) = —(z® + 3 + 2* — 3zyz). det(Vy) = j(z® + * — 2° + 3jzyz). and det(Vy) =
—#(z* +y* + 2% — 37°zyz). As a result, one obtains three non-isomorphic Saito singularities
among quasicones associated with deformations of a simple isolated singularity D,. Hence, the
locns of freeness contains three points corresponding to germs 2) —4). That is, dim L:(Ds) = 0.

In conclusion let us fix a type of homogeneity @ = (d;wy,....wy). Denote hy 8(7) the
set of equivalence classes of Saito singularities of given type m modulo analytic isomorphisis.
Thus. the above considerations imply that §(2; 2.1, 1) contains a poiut corresponding to the
deformation F; = tz + y® + 22 of an A;-singularity, 8(3: L. 1, 1) contains at least three distinct
points corresponding to germs 2) — 4) from the above, and so on. As a result oue can pose the
following question:

Problem 5. How one can describe the set §(7) for a given type of homogeneity ?
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Anpnorauus. [enn sToll 3ameTku — usydenue npodienrsl kIaccudUkalul KBA3HOINOPOIILIX CEO-
Goannx aueu3opos CauTo ¢ noMonio Teopud Jedopumauuil mioroobpazuit ¢ G,,-gelicrsuen. B uaeT-

HOCTH, MLI OIHCLIBAEM HOANGT K BLIYMCIENHIO CTpaTa CBO(‘)O,ILI[OCTH A1A ,ZI.E(I}OI.)AIHLLLIH KBASHKOIIYCOB
a1 KBa3HITTaTKHMH .\11101"006[.)&314311\1]1. Mur Taxske OﬁC}'}KJ‘aEM IIeKOTOpLIE NOJE3ILIE [IPHIOMKEIHdA B

fosee oBlIeM KOITEKCTE, BKIIOYAR METOAL! BLIYHCIENHS 3TOro eTpaTta 41s dechopmaliuil ocobenioctedl
ranepnosepxuocTell, KoMIaKTH(UKALME [IPOCTPALCTE MOAYIel 1 T.1.

Kmrouesrie caoba: dorapudinimueckue Juddepenuuainine qGopMil, hopMa-BLINeTPETYIAPILIE
sepomopdinie muddepennuanine dopMmul, Kpydenue roitoMopdunx guddhepeliaios,



