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1 Introduction and main results

Schiwick [8] was the first to draw a conuection between values shared by functions in F (and
their derivatives) and the normality of the family F. Specifically, he showed that if there exist
three distinet complex numbers a;, as, a3 such that f and f' share a; (j = 1,2.3) IM in D for
each f € F, then F is normal in D,

In 2006, Wang and Yi [9|proved a uniqueness theorem for entire functions that share a
polvuomial with their derivatives, as follows

Theorem A. Let f be a nonconstant entire function, let Q(z) be a polynomial of degree
g > 1, and let k > q be an integer. If f and f' share Q(z) CM, and if f*)(z) — Q(2) = 0
whenever f(z) — Q(z) =0, then f = f'.

According to Bloch¥Ts principle. numerous normality criteria have been obtained by starting
from Picard type theorems. On the other hand. by Nevanlinna's famous five point theorem and
Montel's theorem. it is interesting to establish normality eriteria by using conditions known
from a sharing values theorem.

In this note, we obtain the following normal family related to Theorem A.

Theorem 1.1 Let F be a family of holomorphic functions in a domain D; let Q(z) be a
polynomial of degree g 7 1, and let k = 2q+ 1 be an integer. If, for each f € F , we have

f(z) = Q(2) = '(2) = Q(z) = f® = Q(2),
then F is normal in D.

In order to prove theorem 1.1, we need the following results, which are interesting in their own
rights.

Proposition 1. Let F be a family of holomorphic functions in a domain D: let h{z) be a
polynomial of degree q > 1; let k > g be an integer. If. for each f € F, we have h(z) = 0 =
f(2) =0 and f(z) =0 = f'(2) = h(z) = | f¥)(2)| < M, where M is a positive number, then
F is normal in D.
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Proposition 2. Let F be a family of holomorphic functions in a domain D; let Q(z) be
a polynomal of degree g > 1: let k > 2q + 1 be an infeger. If, for each f € F. we have
Q) —Q(z)=0=f(z) £0 and f(z) =0 = f'(z) = Q(z) — Q'(z) = fH¥(2) = Q(z), then F

is normal in D.

2 Some Lemmas

Lemma 2.1 (9] Let F be a family of functions meromorphic in a domain D, all of whose
zeros have multiplicity at least k, and suppose that there exists A > 1 such that |f*(z)] € A
whenever f(z) =0, if F 1s not normal at zy € D, then for each 0 < a < k there ezist,

(a) points z, € D, z, — zy;

(b) functions f, € F, and

(c) positive number p, — 0 such that p7® fu(zn + pul) = gu(C) — g(¢) locally uniformly,
where g is a nonconstant meromorphic function in C, all of whose zeros have multiplicity at
least k, such that g*(¢) € ¢°(0) = kA+1. In particular, if F is a family of holomorphic functions,
then p(g) < 1.

Lemma 2.2 (2] Let g be a nonconstant entire function with p(g) < 1; let k > 2 be a positive
integer; and let a be a nonzero finite value. If g(z) =0 = ¢'(z) = a, and ¢'(2) = a = ¢¥)(2) =0,
then g(z) = a(z — zp), where z is a constant.

Lemma 2.3 (2] Let F be a family of holomorphic functions in a domain D; let k > 2 be a
positive integer; and let o be a function holomorphic in D, such that a(z) £ 0 for z € D. If for
every f € F, f(2) =0= f'(2) = a(2) and f'(2) = a(2) = |f*)z)| < h, where h is a positive
number, then F 1s normal in D.

In order to prove theorem 1.1, we need some definitions.
Let A= {z: |z] < ro}. let Q(z) be a polynomial of degree g > 1 and R(z) = Q{z) —Q'(z) =
2™P(z), P(z) # 0, when z € A. Define that Q,(z) = Q(z + a), where a is a constant, then
R,(2) = Qu(z) — Qulz) = (z +a)" Fu(2).

Define Ay = % and Aq(0) £ 0, where f is holomorphic function in A. Thus we get f' =
Maf+ Re = Aa1 f + fla1. By mathematic induction we get f®) = Ao f +par (k> q+2), where

ok = Ra{A5™! + Peoo[Aa]} + Ro{A072 + Pacs[Aa]} + o + BT L P D]} (20)
and Pe-s[Aa], .. .. Pecgen)[Aa] are differential polynomial in A, with degree at most k—2,... . k—
(g + 2) respectively. Let pg(0) — Q.(0) £ 0. Define 1,(0) # 0 where

k) _ .
TR i - Wal’ (2:2)

Define ,(0) # 0 where

1 1 1 y 0
va=—[1+ (T}IQO 0 fQ:z]Ra - TQORa- (2.3)
Ta Va Wa
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Lemma 2.4 Let f(z) be analytic in the disc A = {z : |z] < ry}; let a be a compler number
such that la| < ry; let k > g+ 2 be a positive integer. If Qu, RBa. Aa. plak. e and g, are defined
as above: if f(0)#Z0, |f'— Ro|am0 # 0, B, =0= f(2) # 0 and

f2) =0=f(z) =R = f¥(2) = Qu.

then PR
T(]"‘. f) < LD[T‘ f] - _]lﬂt)g |m|z=[] =+ I(Jg |f((]) 4 (24)
where
/ *) *) "_p (*)
LDI[r, f] = My[m(r, f?} -+ m(r, T} + m(r, %) +m(r, ﬁ) + m(r, ﬁ}]
o flen v N . AR
+ Mym(r, 0 Ra) + My[m(r, L_a} + m(r. )\—Q) + ..+ mir, X )]

+ My[m(r,R,) + m(r,R,) + ...+ m(r, R®) + m(r,Q,) + m(r, Q) +log 2],
and My, My, My are positive numbers.

Lemma 2.5 [1] Let U(r) be a nonnegative, tncreasing function on an interval [Ry, Ro](0 <
R, < R, < +0x); let a.b be two positive constants satisfying b > (a + 2)°; and let

Ur) < a{logTU(p) + log = f r} ~b

whenever By < r < p < Ry. Then, for By <r < Ry,

Ry

+ 2b.

J 2alog
U(r) < alog —

Lemma 2.6 [i] Let g(z) be a transcendental entire function. Then

lim sup |z|¢*(z) = +oc.
|zf=—me

3 Proof of Proposition 1

Let zy € D. If h(zy) # 0. by Lemma 2.3, F 1s normal at z;. Now suppose that h{z;) = 0. Without
loss of generality, we may assume that 2 =0, A = {z: |2| < 4} € D and h(z) = 2™b(z), where
b(0) =1 and b(z) # 0 (z € A). We shall prove that F is normal at z = (),

Let Hi ={F = ;& : f € F}. We know that if F; is normal at 2z = 0, then F is normal at
z = (). Thus we only ueed to prove F; is normal at z = (.

For each f € F, from h(z) = 0= f(z) =0, we get z =0 is a zero of f. Thus we have

Fl2) =t Ltz L. (@ 0) (= 1),

and

fl(z) = h(z) = napz™" + (R4 Dappiz" +...— (2™ +...) .
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By the assumption f(z) = 0= f'(z) = h(z). we get

1 .
f = —Ilzmﬂ - ﬁm+gznl+2 o (31}
T

Hence we get F; is a family of holomorphic functions in A. Next we prove ¥ F = 2% e F,
F=0= |F'| < M, where M = max,cx b(z)| = L
Suppose that F(ay) =0, tlle:u f (ag) = 0.

If ay # 0, we get F'(ay) = ﬁﬂ\ﬂh— = b(ay).
Ifay =0, we get F'(ay) = b(a{]) — m”—:_l =l--== m+1 Thus we get F=0= |F'| < M.

Now we prove that F; is normal at z = (. Suppose on the contrary that F; is not normal
at z = (). then by Lemma 2.1, we can find z, — 0. p, — 0 and f, € F such that

fy —1fn(zn+PnC)
9nlC) = py Gont )™

— 9(¢) (3.2)
locally uniformly on C', where ¢ is a nonconstant entire funetion such that ¢*(¢) < ¢°(0) = M+1.

In particular p(g) < 1. Without loss of generality, we assume that lim ;—" ¢ € C. In the
R=—eos FTE

following we consider two cases.

Case 1: ¢ = oo. Then z, # 0 and ‘°— — 0 asn — oc. Set hn(¢) = 'lm-‘- Then by
(3.2), we get

hy
i{g (n'(nC)m Zn

We claim:
9(Q)=0=4g'(¢)=1land g(¢) = L= ¢g¥(¢) = 0.

Suppose that g(¢;) = 0. then by Hurwitz’s Theorem, there exist (,. (, — (. such that (for n
sufficiently large)
hn(gn) — ﬁ;l fnl2za :_mﬂnCn) =
zn
Thus f,.(z, = pnCs) = 0. by the assumption we have f)(z, — pnCn) = (2n = 206 )™ b(20 + pula).
then we derive that
(o) = limg Ll t ) gy po )14 6™ = b(0) =
=0

N=—sOC
—_— zﬂ

Thus g(¢) = 0 = ¢'(¢) = 1. Next we prove ¢'(¢) =1 = g®(¢) = 0. By (3.3) we kuow

falzn + pnl) _ Jalzn + pnl)

(zn T ,Ong}m }(Zn - png) i Zﬁn(l + %C)mb(zn in pnc} —+ {C}

We suppose that ¢'(¢y) = 1, obviously ¢’ 2 1, for otherwise ¢*(0) < ¢'(0) = 1 < M + 1,
which is a contradiction. Heuce by Hurwitz's Theorem, there exist (n, ¢ — (o, such that (for
n sufficiently large)

falzn + pnln)

: =1,
[zn E ﬂnCn)mb(zn + Joncn)
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Thus fl(zn + pnn) = h(2n + puCy). by the assumption we get ¥ (2, + puCa)| < M. Then

k=1 k=1

{ / . )
19™(Go)| = lim [Z2—F8 (2, + paGy)| < lim
= Zn

n:x:zl

M=0.

Thus we prove the Claim. By Lemma 2.2, we get g = ( — b. where b is a constant. Thus we
have ¢*(0) <1 < M + 1, which is a contradiction.
Case 2: ¢ # oo. We set
G.(c) = fa(pnC) (3.4)

m+1
Pn

Then
_yfo(zn +pn(¢ - '“})

Pr T pal( — )7 °

We know that 2z = 0 is zero of f, with mult:lphut} m+ 1, then we get 0 is a zero of G(() with
multiplicity m + 1 and

Gal() = = g9 —e){" =G(()

G () = Jim GI+10) = m! (3.5)

If G'(¢) = ¢™, we derive that G(¢) = m;ﬂgmﬂ. Hence we obtain g(¢) = =2=(¢ +¢). I
follows that g*(0) < L5 < M + 1. a contradiction. Thus G'({) £ ¢™. Using the same argument
as in the proof of Case 1, we get

G()=0&G(()=¢"and G'() =¢

GEO) LM, k=m+1,
G*() =0, kzm+2.

Suppose G({) is a polynomial. Let

G(¢) = bng e bq—lcq-l T T ‘l".'fr11-1§m+1 (bs1 # 0). (3.6)
From G({) =0 & G'(¢) = (™. we get
G(§) = ¢(G(Q) —¢MA. (3.7)

Thus, by (3.6) and (3.7) we have G({) = by(? — 7= m+1 ("™ (g 2 m+2) or G(¢) = AC™T,
and from (3.5), we get G({) = ;75¢™". Then G'(¢) = (™, a contradiction.

In the following we assume that G(¢) is a transcendental entire function.

Let us consider the family T = {t, : t,({) = %}%‘%ﬂ;} we see that f,, is a entire function
satisfving
t.(0) €M, k=m+1,

() =0e6(()=¢= {t (€)=0, k>m-+2.

By Lemma 2.3, we have T is normal on Dy = {¢: (1/2)™ < [¢| £ 2™}, thus there exists a M;
satisfying
my (m+2)n F MmN
) i (03 | RO
(zm (m+1)r _| (‘{'Zm}ngnz

(0=
Set r(z) = :i—'ii— then r(z) is a transcendental entire function. We know that for each z € C,
there exists a integer n such that z = (2™)"(, where (1/2)™ < (| £ 2™, We can get

m+1

E {2m}3m+4jurl Y 3

(3.8)

|2.’ F'(z < (zm ‘}m+4f (C 5
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From Lemma 2.6, we get

lim sup |2|r*(2) = +o¢,
|z|—nc

which contradiets with (3.8).
Thus, we prove that F; is normal at z = 0. Hence F is normal at z = (.

4 Proof of Proposition 2

Let zy € D. If [Q(z) — Q'(2)]|222, # 0, by Lemma 2.3, F is normal at z;. Now suppose that
[Q(z) — Q'(2)]| 222, = 0. Without loss of generality, we may assume that z, =0, A= {z: |z <
0} € D and R(z) = Q(z) — @'(z) = z2™P(z), where P(z) # 0 (2 € A). We shall prove that F
is normal at z = (.

Suppose on the contrary that F is not normal at z = (), then by Lemma 2.1, we can find
z2p — 0, pp = 0 and f,, € F such that

gn(‘:) g fn(zn e fan) — th) (4'1}

locally uniformly on C', where g is a nonconstant entire function. Without loss of generality, we
assumne that

.z

lim Z2=ceC.

v iy

First, we shall prove that g({) is a transcendental entire function. In fact, we only need to prove
that g(¢) # 0. The argument given in the proof of Proposition 1 shows that

9{)=0=4(0) =0,

thus g only has multiple zeros. Suppose (y is a zero of g(¢) with multiplicity s(> 2), then
g**(¢y) # 0. Thus there exists a positive number 4, such that

9(¢) #0. g'(¢) #0. g¥(¢) #0 (42)

on Df = {¢:0 < [¢— ¢l <0} By (41) and Rouché theorem, there exist {,;(j = 1.2.....s) on
Dspp = {¢ 1 [¢ — Go| < 0/2} such that

GnlCn;) = Falzn + pubnj) =0 (7 =1.2,...,8).

It follows from R(z) = 0 = f(z) # 0 and f(z) = 0 = f/(2) = R(2) that fy(zn + palay) =
R(zn o ﬂn(n.j} # U TllllS

9:1@:1‘_3') = Pnf:;(zn + Pngn‘_j) = PnR(zn L Pngn,j) # UU =1,2,..,5),
so each ¢, ; is a simple zero of g,(¢). that is (o # (Ll <1 j € s). On the other hand

lim 9:;(<n,_j) = lim ﬂnR(zn o ()nCn.j) =10
a0

=00 =

From (4.2), we get
lim Gj =6 (j=12..,4).
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Noting that (4.2) and g, (() — paR(2, + puC) has s zeros G, ;(7 = 1.2,..., ) in Dgpn, then §, is
a zero of ¢'(¢) of multiplicity s, and thus ¢'*)(¢y) = 0. This is a contradiction. Hence g(¢) # 0
and g(() is a transcendental entire function.

Now we consider five cases.

Case 1: There exist infinitely many {n;} such that

f;ij (2n; + pn;C) = R(zn; + pn, ).

It follows that g, () = pn,R(2n, + pn,(). Let j — oo, we deduce that g'({) = 0, which
contradicts that g is transcendental.

; B . SR
Case 2: There exist infinitely many {n;} such that ¢, (2, +pn,() =0, where ¢, = —'f“%&l
Thus we have

n, ()

n

(k)
(2n; + pn; Q)" Pzn; + Pnjf}gh:k—(g} = Q(2n; + pn€)

]

and " i
ge(¢) _ Q(2n, + pn,C)pm,

90,00 Plen, +pu Q)22+ O™

Noting that & > 2+ 1 > 2m + 1, let j — oo, we deduce that g*)(¢) = 0, which contradicts
that g is transcendental.
Case 3: There exist infinitely many {n;} such that o, (z,, + pn () = 0, where

I W 1,
pn=—[1+(—)'Q + —Q|R - —QR
Un Un Uy
and v, is defined as above. Let

F[O - f)i;l:m+lj[(ﬁ g C)m_lPl (zl’lj - fn; C)QH;}(O EE (zl SE C}mP(zn_f - g C)grlf_:HJ(C)

Pn; n;
— P57 @ (2n; + P,€)85,(C) — PR THQ (20, + pnyC)gn, (O]
Then
—T(()Q(2n; + pn,C)
(522 + O™ Pen; + pn,O)ng () — Qlany + o, ™, (O)

i Qrtzﬂj i pnjg)prkl;m

) : E—(m+1) 1 ¢

2n; ’ On; (O 2, + Pn-OP‘n- Py(z,, + pn,()

El L4 O™ P(zy, + pra. 3 — 5 C Y i ¢l :Eadiy
(pnj P (o s 9n; () (5= + Q) P(zn; + pn,C)

Pry

where R'(z) = 2™~1P(2).
Thus, let j — oo, we get g*/(¢) = 0, which contradicts that g is transcendental.
Case 4: There exist infinitely many {n;} such that ;xknj{znj - Pn,€ )= Q(znj + fn;€C ) where

Hin = R{Aﬁ-l s Pk—?[)‘n.]} E RF{}\i-?' o Pk—:{[/\n]} = A o R(QJ{)\i_(Q+1) - Pk—[qﬂ—?)[/\n:}-

bl

and A, = 3

. Thus, let j — oo, we get

(%)"'(”"“) [(c+ g]mP({J)(%)m + R™(0)] = 0.
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Hence g' =0 or (¢ + g')mP((])(%)”‘ + R'™)(0) = 0, which contradicts that g is a transcendental
entire function.

Case 5: There exist finitely many {n;} such that f,;j(znj + n,C) = B(2n, + pn,C); Yn;(2n, +
pn_fgj = {J-. s (zll_" = ,'Dnjc} =0 and Hien; (zn_,- = Pr; C} = Q(znj HEE pi’ljg)'

For all n we may suppose that f’ (2n; + Pu,€) & R(2n; + pn,C)s Un, (2, + m,C) £ 0,
@n;(#n; + pn;¢) £ 0 and Hien, _(zn_,- + on;€) ZF Qzn; + puC)-

Take ¢y € € such that g% (G) # 0 (5 = 0.1, ..., k). In case ¢ # oo, choose {; to satisfy the

additional conditions that {3 # —c and

g'(Co)\m
9(Co)
Noting that ¥ = 2¢g + 1 > 2m + 1, this facts imply that K, =— () as n — oo, so that

log K;, — —oo as n — oa.
Forn=1,223,..., put

(c+ )™ PO)(L2L)™ + R™(0) £ 0

hal(z) = falza + pulo + 2)
Since z, + puo — 0 as n — oo, it follows that (for sufficiently large n) h, is defined and
holomorphic on |z < 3. Denote
an = Zn + Pulp-

Then, for sufficiently large n, h,(0) £ 0, h(0) — R, (0) # 0. By the assumption we get
i) =0 =813 = Ry i) = Q..
Let a = an and f(z2) = ha(2) in Lemma 2.4, then we get
hn(—an) = f2(0) #0,9.,.(0) = ¥n(an) # 0, ©..(0) = pula.) # 0,

[,Ua“k = Qa“: =0 = [,Ukn = Q r=a, % 0.

thus h,(z) satisfies the assumption of Lemma 2.4,

Now applying Lemma 2.4 with ry = % and noting that the last three terms in (2.4) are

bounded for 0 < 7 < 1/3. we obtain that, for sufficiently large n and 0 < r < 1/3,

1 (k) (k) MR 163}
T(r, hy) < Mi[m(r, h—n) +mir. };:L )+ m(r, }};n m(r. H} + m(r, }!}L_ﬁ)]
|k+1 o ' (k=2)
+ Mym(r, h:m—iﬁ’an) + My[m(r, ::ar y +m(r, }\::) + ... +m(r, A)\an )]
We can obtain, for 0 < r <7< 1/3,
1
T(r.hn) < Cp{l+log™ log +'r Tt log *T(7, hy) (4.3)

+log T T (7. hn_ +log T T (7, s, ) +log TT(7, Ao ) }-

Observe that T(m, b)) = m(r, b)) € m(7, h,) + m(r, %:—). hence for 1/4 < r < p < 1/3 with
7 = (r + p)/2. From the above we obtain

1
T(r.hn) £ Cr(l+log™ — +log TT (p. hn)).
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By Lemma 2.5 it then follows that T(1/4.h,) < A, where 4 is a constant independent of
n. Thus fu(z) is uniformly bounded for sufficiently large n and |z| < 1/8. However, from
PEf 20+ paCo) = gl (o) — g"(Co) # 0 we see that f(z) cannot bounded in |z| < 1/8. This is a
contradiction, so the proof is complete.

5 Proof of Theorem 1.1

Let §={g=f-Q: fe€F}and R(z) = Q(z) — Q'(z). Obviously, § is normal in D if and

only if F is normal in D. It follows from our assumption that, for any g € G, we have
g=0=¢'=R=g® =0Q. (5.1)

Let 23 € D. Now we prove that § is normal at z,. Let {g,} C G be a sequence.

If R(z,) # 0, then there exists a positive munber § such that Ay = {z € D : |z—z| < 6} C D
and R(z) # 0 in A;. Then by Lemma 2.3, {g,} is normal at z;,.

If R(zy) = 0, then there exists a positive munber § such that Ay = {z € D : |z—z| < §} C D
and R(z) # 0 in Ag\{z}. Suppose {g,} has a subsequence say, without loss of generality. itself,
such that gn(z0) = 0, then {g.} is normal at 2¢ by Proposition 1. Suppose gn(z0) # 0 for all
but finite many of {g,}. then {g,} is normal at z;, by Proposition 2.

Thus F is normal in D and hence Theorem 1.1 is proved.
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