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Abstract. We study the approach to the theory of hypergeometric functions in several variables
via a generalization of the Horn system of differential equations. A formula for the dimension of its
solution space is given. Using this formula we construct an explicit basis in the space of holomorphic
solutions to the generalized Iorn system under some assumptions on its parameters.
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1 Introduction

There exist several approaches to the notion of a hypergeometric function depeuding on seversal
complex variables. Tt can be defined as the sum of a power series of a certain form (such series
are known as [-series) [10], as a solution to a system of partial differential equations [9], [11],
[1], or as a Mellin-Barnes integral [15]. In the present paper we study the approach to the theory
of hypergeometric functions via a generalization of the Horn system of differential equations.
We consider the system of partial differential equations of iypergeometric type

' F(f)y(z) = Qi(f)y(z). i=1.....n. (1.1)

where the vectors u; = (Us..... Uin) € E™ are assumed to be linearly independeut, P, @; are
nonzero polynomials in n complex variables and 6 = (6. ..., On). 0; = x; % We use the notation

o = i .o, If {w;}, form the standard basis of the lattice Z* then the system (1.1)
coincides with a classical system of partial differential equations which goes back to Horn and
Mellin (see [13] and § 1.2 of [10]). In the present paper the system (1.1) is referred to as the
sparse hypergeometric system (or generalized Horn system) since, in general, its series solutions
might have many gaps.

A sparse hypergeometric system can be easily reduced to the classical Horn system by a
monomial change of variables. The main purpose of the present paper is to discuss the relation
between the sparse and the classical case in detail for the benefit of a reader interested in explicit
solutions of hypergeometric D-modules. We also furnish several examples which illustrate crucial
properties of the siugularities of multivariate hypergeometric functions. Most of the statements
in this article are parallel to or follow from the results in [16].

A typical example of a sparse hypergeometric system is the Mellin system of equations
(see [7]). Oue of the reasons for studying sparse hypergeometric systems is the fact that knowing
the structure of solutions to (1.1) allows one to investigate the so-called amoeba of the singular
locus of a solution to (1.1). The notion of amoebas was introduced by Gelfand, Kapranov and
Zelevinsky (see [12], Chapter 6, § 1). Given a mapping f(x). its amoeba A; is the image of the
hypersurface f~1(0) under the map (z;,....z,) — (log |z]... ., log |z, ). In section 5 we use the
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results on the structure of solutions to (1.1) for computing the number of connected components
of the complement of amoebas of some rational functions. The problem of describing the class
of rational hiypergeometric functions was studied in a different setting in [5]. [6]. The definition
of a hypergeowmetric function used in these papers is based on the Gelfand-Kapranov-Zelevinsky
system of differential equations [9], [10], [L1].

Solutions to (1.1) are closely related to the notion of a generalized Horn series which is
defined as a formal (Laurent) series

y(z) =1 Z w(s)z®, (L.2)

seL™

whose coefficients (s) are characterized by the property that p(s+uw;) = (s)R;(s). Here R;(s)
are rational functions. We also use notations v = (y1.....7) € C% Revy; € ['U_.l}. e
.. zin. In the ease when {u;}., form the standard basis of Z" we get the definition of
the classical Horn series (see [10]. § 1.2).

In the case of two or more variables the generalized Horn system (1.1) is in general not
solvable in the class of series (1.2) without additional assumptions on the polynomials P, Q;.
In section 2 we investigate solvability of hypergeometric systems of equations and describe
supports of solutions to the generalized Horu system. The necessary and sufficient conditions
for a formal solution to the system (1.1) in the class (1.2) to exist are given in Theorem 2.1,

In section 3 we consider the D-module associated with the generalized Horn system. We give
a formula which allows one to compute the dimension of the space of holomorphic solutions
to (1.1) at a generic point under some additional assumptions on the system under study
(Theorem 3.3). We give also an estimate for the dimension of the solution space of (1.1) under
less restrictive assumptions on the parameters of the system (Corollary 3.4).

In section 4 we consider the case when the polynomials P, (); can be factorized up to
polynomials of degree 1 and construct an explicit basis in the space of holomorphie solutions to
some systems of the Horn type. We show that in the case when R;(s+u;)R;(s) = R;(s+u;)Ry(s).
@i(s + ;) = Qi(s) and deg Q:(s) > deg Fi(s), &.j =1,..., n. 1 # j. there exists a basis m the
space of holomorphic solutions to (1.1) consisting of series (1.2) if the parameters of the system
under study are sufficiently general (Theorem 4.1).

T section 3 we apply the results on the generalized Horn systemn to the problem of describing
the complement of the amoeha of a rational function. We show how Theorem 2.1 can be used
for studying Laurent series developments of a rational solution to (1.1). A class of rational
hypergeometric functions with minimal number of connected components of the complement
of the amoeba is described.

2 Supports of solutions to sparse hypergeometric systems

Suppose that the series (1.2) represents a solution to the system (1.1). Computing the action
of the operator z* P,(f) — @Q;(#) on this series we arrive at the following system of difference
equations

(s +w)Qi(s +7+w) = p(s)Ri(s +7), i=1,...,n (2.1)

The systemn (2.1) is equivalent to (1.1) as long as we are concerned with those solutions to the
generalized Horn system which admit a series expansion of the form (1.2). Let Z" +~ denote the
shift in C" of the lattice Z" with respect to the vector . Without loss of generality we assume
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that the polynomials Fi(s), Q:(s + ;) are relatively prime for all i = 1,...,n. In this section
we shall deseribe nontrivial solutions to the system (2.1) (i.e. those ones which are not equal
to zero identically). While looking for a solution to (2.1) which is different from zero on some
subset § of Z" we shall assume that the polynomials P;(s), Q;(s). the set S and the vector ~
gatisfy the condition

Fi(s +7)| + |Qi(s + v +w)| #0, (2.2)

for any s € § and for all i = 1,...,n. That is, for any s € § the equality Fi(s —~) = 0 implies
that Qi(s + v+ u;) # 0 and Q;i(s + v + u;) = 0 implies Pi(s + ) # 0.

The system of difference equations (2.1) is in general not solvable without further restrictions
on P, Q;. Let R;(s) denote the rational function Py(s)/Q;(s + ;). i = 1,....n. Increasing the
argument s in the ith equation of (2.1) by u; and multiplying the obtained equality by the jth
equation of (2.1), we arrive at the relation ¢(s +u; +u;)/w(s) = Ri(s +u;)R;(s). Analogously,
increasing the argument in the jth equation of (2.1) by u; and multiplying the result by the ith
equation of (2.1), we arrive at the equality (s + u; + u;)/p(s) = Rj(s + u;)Ri(s). Thus the
couditions

Ri(s +u;)R;(s) = Rj(s +w)Ri(s), i.j=1,..., n (2.3)

are in general necessary for (2.1) to be solvable. The conditions (2.3) will be referred to as
the cowpatibility conditions for the system (2.1). Throughout this paper we assume that the
polynomials F;. @; defining the generalized Horn system (1.1) satisfy (2.3).

Let 7 denote the matrix whose rows are the vectors u;..... U, A set § C Z" is said to
be U-connected if any two points in § can be connected by a polygonal line with the vectors
Uy, .... U, as sides and vertices in S, Let p(s) be a solution to (2.1). We define the support
of ©(s) to be the subset of the lattice Z" where o(s) is different from zero. A formal series
VY oz w(s)z is called a formal solution to the system (1.1) if the function p(s) satisfies
the equations (2.1) at each point of the lattice Z". The following Theorem gives necessary and
sufficient conditions for a solution to the system (2.1) supported in some set § C Z" to exist.

Theorem 2.1 For § C Z" define
S ={scSs4u g8}, S ={s¢8: st 8}, i=1.. n.

Suppose that the conditions (2.2) are satisfied on S. Then there exists a solution to the system
(2.1) supported in S if and only if the following conditions are fulfilled:

P(s+7)|g =0, Qils+y+u)lgr=0,i=1,..., . (2.4)

F(s+7)lgg #0, Qils+v+w)[s#0, i=1,..., n. (2.3)

The proof of this theorem is analogous to the proof of Theorem 1.3 in [16]. Theorem 2.1
will be used in section 4 for constructing an explicit basis in the space of holomorphic solutions
to the generalized Horn system in the case when deg @Q; > deg P; and Qi(s + uj) = Qu(s).
i.j=1,....n,i# j. In the next section we compute the dimension of the space of holomorphic

solutions to (1.1) at a generic point.
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3 Holomorphic solutions to sparse systemns

Let G; denote the differential operator % P(f) —@;(f). = = 1.....n. Let D be the Weyl algebra
in n variables [3]. and define M = D/ >"7_ DG; to be the left D-module associated with the
system (1.1). Let R = Clzy,..., 2,] and R[z] = R[z;,..., 2] = Clryy e Ty vy 2], We

make R[z] into a left D-module by defining the action of @; on R[z] by

é)j = E—O—ZJ Lz‘}l}
Let @ : D — R[z] be the D-linear map defined by
Sz ... o) = (3.2)

It is easily checked that @ is an isomorphism of D-modules. In this section we establish some
properties of linear operators acting on R[z]. We aim to construct a commutative family of D-
linear operators W; : R[z] — Rlz], i = 1,...,n which satisfy the equality ®(G;) = Wi(1). The
erucial point which requires additional assumptions on the parameters of the systemn (1.1) is the
conmutativity of the family {117}, whicli is needed for computing the dimension (as a C-vector
space) of the module R[z]/ Y 1., WiR[z] at a fixed poiut z(". We construct the operators 1}
and show that they commute with one another under some additional assumptions on the
polynomials ;(s) (Lemma 3.1). However, no additional assumptions on the polynomials F(s)
are needed as long as the compatibility conditions (2.3) are fulfilled.
Following the spirit of Adolphson [1] we define operators D; : R[z] — R|z] by setting

Dizza-ri—e—a:xzi. o= s L (3.3)
0z
It was pointed out in [1] that the operators (3.3) form a commutative family of D-linear
operators, Let D denote the vector (Di.....Dyn). For any 2 = 1...., n we define operator
V:: R[z] — Rlz] by V; = 27'D;. This operator comumnites with the operators d; since both D;
and the multiplication by 27" commute with d;. Moreover, the operator V; commutes with V;
for all 1 £1.7 < n and with D, for i # j. In the case i = j we have V,D; = V; + D;V,.
Thanks to Lemma 2.2 in [16] we may define operators W; = P;(D)V* — (D) such that
for auy ¢ = L.....n W, is a D-linear operator satisfying the identity ®(G;) = Wi(1). It
follows by the D-linearity of W; that Y W;R[z] and R[z]/ S _, W;R|z] can be considered
as left D-modules. Using Theorem 4.4 and Lemma 4.12 in [1]. we conclude that the following

isomorphism holds true:
M =~ R[z] / (Zu-’jﬁ[ﬁ) ! (3.4)
j=1

Iu the general case the operators W; = B(D)V* —@Q;(D) do not commute since D; does not
commute with V;. However, this family of operators may be shown to be commutative under
some assumptions on the polynomials @Q:(s) in the case when the polynomials Fi(s). Q:(s)
satisfy the cowpatibility conditions (2.3). The following Lemma holds.

Lemma 3.1 The operators W; = Fi(D)V* — Qi(D) commute with one another if and only if
the polynomials P,(s), Q;(s) satisfy the compatibility conditions (2.3) and for anyi,j=1...., mn,

17 J. Qils +uy) = Quls). |
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Proof Since V; = zi-l + Dizl._l it follows that V;D; = V; + D;V; and that V; commutes
with D; for i # j. Hence for any o = (o1,.. ., an) € N§

VDX, D= D= . (D;+1)™... D>V, (3.5)

Let E! denote the operator which increases the ith argument by #, that is. El f(z) = f(z +tes).
Here {e;},_, denotes the standard basis of Z". It follows from (3.5) that

ViPj(D) = (E;{F;)(D)V. (3.6)

For @ € z" let E® denote the composition E* o ... o E?~. Using (3.6) we compute the
commutator of the operators W;, W

WiW; — W;W; = ((P(D)(E“P;)(D) — F;(D)(E* P)(D)) V*++

((BQ)(D) - QD)) B, (D)V* + (Q,(D) - (E“Q)(D)) R(D)V™.  (3.7)

Let us define the grade g(z®2%) of an element z°2° of the ring R[z] to be a — 3. Notice that
g(D;(z%2%)) = o — § and that g(V;(z%2°)) = o — 3 + ;. for any o, 3 € NI. The result of the
action of the operator in the right-hand side of (3.7) on z°z% cousists of three terms whose
grades are o — 3+ u; +u;, o — 3+ u; and o — 3 + u;. Thus the operators W, W) commute if
and ouly if

QD) = (E%Q)(D). i.j=1.....n. i#]. (3.8)

and
E(D)(E*“E)(D) = B(D)EYE)YD), i,j=1,...,n. (3.9)
It follows from (3.8) that the condition @Q(s +u;) = Qi(s). 1.7 = 1.....n, i # j is necessary for

the family {W;}/_ to be commutative. Under this assumption on the polynomials @;(s) the
cowpatibility conditions (2.3) can be written in the form

and they are therefore equivalent to (3.9). The proof is complete.

For z(9 & ¢ let 0, be the D-module of formal power series centered at . Let C,m

denote the set of complex numbers C considered as a Czy, ..., z,]-module via the isomorphism
. (0} (o ’ R : . n
C =~ Clzy, .- -, T/ (z1 — .?:Ii e Ip—Tn )}. We use the following isomorphism (see Proposition

2.5.26 in [4] or [1], § 4) between the space of formal solutions to M at z®) and the dual space
Of Cz[n} 'XC[:I :N[

Homp(M. O,0) 2 Homg (Cyo BCj M. C). (3.10)
This isomorphism liolds for any finitely generated D-module. Using (3.4) and fixing the poiut x =
% we arrive at the 1gommorphism

h n
Cr ®Cpe] (R[I] X 1-1-;-}?[:]) ~R /Y W,oR, (3.11)
=1 1
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where W, . are obtained from the operators W; by setting z = z®. Combining (3.10)
with (3.11) we see that

Homo (M, @I{m} = Homg (R Z Wiz R, C) .
i=1

Thus the following Lemma holds true.

Lemuna 3.2 The number of linearly independent formal power series solutions to the system
(1.1) at the point z = z'9 is equal to dimcR/ S0 W, .o R.

For any differential operator P € D, P = Z!nl‘sm co.(s:}{e%)ﬁ its prineipal symbol o(P)(z, z)
€ R[z] is defined by o(P)(z.2) = 3 4 Calz)2®. Let Hi(z, 2) = o(G;)(z. z) be the principal
symbols of the differential operators which define the generalized Horn system (1.1). Let J C
D be the left ideal generated by Gi,.... Gp. By the definition (see [3], Chapter 5, § 2) the

characteristic variety char(M) of the generalized Horn system is given by
char(M) = {(z,2) € C*" : a(P)(z,2) =0, for all P € J}.

Let us define the set Uny € C" by Un = {z € C* : 32z # 0 such that (z,z) € Char(M)}.
Theorem 7.1 in [3, Chapter 5| yields that for =@ ¢ Uy

Homp(M, 0, ) = Homp(M, O,@).

It follows from [18] (pages 146,148) that the C-dimension of the factor of the ring R with respect
to the ideal generated by the regular sequence of homogeneous polynomials

Hi(z®,2),..., H,(z". z) is equal to the product []"  deg H;(z(™, z). Since a sequence of n
homogeneous polynomials in n variables is regular if and only if their common zero is the origin,
it follows that Une = 0 in our setting. Using Lemmas 3.1,3.2, and Lemnma 2.7 in |lﬁ].. we arrive
at the following Theorem.

Theorem 3.3 Suppose that the polynomials Pi(s). Qi(s) satisfy the compatibility conditions

(2.3) and that Qi(s + u;) = Qi(s) for any i.j = 1..... n, i # j. If the principal symbols

Hi(z® . 2), ..., Hn(J:r\“}._ z) of the differential operators Gu, .. ., G form a regular sequence at =¥

then the dimension of the space of holomorphic solutions to (1.1) at the point ' is equal to

[1L, deg Hi(z™, 2).

Using Lemma 2.7 in [16]. we obtain the following result.

Corollary 3.4 Suppose that the principal symbols H) (z'%, z), ..., H,(z!"), 2) of the differential
operators G.....Gy form a regular sequence at z'%. Then the dimension of the space of
holomorphic solutions to (1.1) at the point ¥ is less than or equal to []_, deg Hy(z(®. z).

In the next section we, using Theorem 3.3. coustruct an explicit basis in the space of
holomorphie solutions to the generalized Horn system under the assumption that P, Q; can
be represented as products of linear factors and that deg(}; > deg P, i =1..... Tt
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4 Explicit basis in the solution space of a sparse hypergeometric system

Throughout this section we assume that the polynomials Pi(s), Q;(s) defining the generalized
Horn system (1.1) can be factorized up to polynomials of degree one. Suppose that Pi(s). Qils)
satisfy the following conditions: Q;(s + u;) = Q;(s) and deg @Q; > deg P, for any i.j = 1..... .
i # j. In this section we will show how to construct an explicit basis in the solution space of
such a system of partial differential equations under some additional assumptions which are
always satisfied if the parameters of the system under study are sufficiently general.

Recall that IJ deuote.‘n the matrix whose rows are u;..... .1, and let U7 denote the transpose
of U. Let A = (UT)™, let ( \s), denote the ith component of the vector As and d; = deg ;.
Under the above conditions the polynomials @;(s) can be represented in the form

I:L

1

H ((As), —ay), i=1,..., R = o

j=1

By the Ore-Sato theorem [17] (see also § 1.2 of [10]) the general solution to the system of
difference equations (2.1) associated with (1.1) can be written in the form

1 T({Ai s) — i)
Hz— HJ 1 (xg J_J'}

where p € My, fi.e; € C. A; € Z" and ¢(s) is an arbitrary function satisfying the periodicity
conditions CJ(S—I— u;) = o(s),i=1,..., n. (Given polyunomials P, @; satisfying the compatibility
conditions (2.3), the parameters p, h i, A; of the solution ¢(s) can be computed explicitly. For
a coucrete LDll.‘:tIllLtIUll of the function @(s) see [16]. The following Theorem holds true.

o(s), (4.1)

TO S

Theorem 4.1 Suppose that the following conditions are fulfilled.

L For gy 4,0 =100, .n, i # j it holds Qi(s 4+ u;) = Qi(s) and deg Q; > deg P,.

2. The difference ai; — oux 18 never equal to a real integer number, for any i = 1...., .moand
i#k.

3. For any multi-indez I = (iy.....1,) withi, € {1,.... di} the product [, ({4, s) —¢;) never

vanishes on the shifted lattice Z" + ;. where v = (@4, .. . gy, )-
Then the family consisting of [['_, d; functions
" ({4, 8+ =
yr(z) =z Z o I, ot g =) — (4.2)
B Ky H ((As) ) + Qri, — o + 1)

is a basis in the space of holomorphic solutions to the system (1.1) at any point z € (C*)" =
(C\ {0})". Here Ky is the cone spanned by the vectors uy. ..., u,.

Proof It follows from Theorem 2.1 and the assumptions 2.3 of Theorem 4.1 that the series (4.2)
formally satisfies the generalized Horu system (1.1). Let yp denote the kth row of \. Siuce
deg Q;i(s) > deg Pi(s), i = 1,.... n it follows by the construction of the function (4.1) (see [16])

that all the components of the vector A = Zi.:l A; — >0 dix; are negative. Thus for any
multi-index I the intersection of the half-space Re(/, s:) > () with the shifted octant Ky 7 is
a bounded set. Using the Stirling formula we conclude that the series (4.2) converges everywhere
in (C*)" for any multi-index I.
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The series (4.2) corresponding to different multi-indices I, .J are linearly independent since by
the second assumption of Theorem 4.1 their initial wonomials £, 277 are different. Finally, the
conditions of Theorem 3.3 are satisfied in our setting since the first assnmption of Theorem 4.1
yields that the sequence of principal symbols H;(z, z)...., H.(z'9, 2) € R of hypergeometric
differential operators defining the generalized Horn system is regular for ' € (C*)". Hence
by Theorem 3.3 the munber of linearly independent holomorphic solutions to the system under
study at a generic point equals [[_ d;. In this case Uy = {z¥ € c* . z%[]) Lzl = 0}.
Thus the series (4.2) span the space of holomorphie solutions to the system (1.1) at any point
W ¢ (c*)". The proof is complete.

In the theory developed by Gelfand, Kapranov and Zelevinsky the conditions 2 and 3 of
Theorem 4.1 correspond to the so-called nouresonant case (see [9], § 8.1). Thus the result on
the structure of solutions to the generalized Horn system can be formulated as follows.

Corollary 4.2 Let z'% £ (C*)" and suppose that Qi(s + u;) = Qi(s) and deg Q; > deg P; for
any 1.7 = 1l.....n, i # j. If the parameters of the systern (1.1) are nonresonant then there

erists a basis in the space of holomorphic solutions to (1.1) near TV whose elements are given

by series of the form (1.2).

5 Examples

In this section we use the results on the structure of solutions to the generalized Horn system for
computing the munber of Laurent expansions of sowe rational functions. This problem is closely
related to the notion of the amoeba of a Laurent polynomial, which was introduced by Gelfand
et al. in [12] (see Chapter 6, § 1). Given a Laurent polynomial f, its amoeba Ay is defined to
be the image of the hypersurface f=(0) under the map (z;.....z,) — (log|zy|..... log |z,]).
This name is motivated by the typical shape of A, with tentacle-like asymptotes going off to
infinity. The connected components of the complement of the amoeba are convex and each such
component corresponds to a specific Laurent series development with the ceuter at the origin
of the rational function 1/f (see [12], Chapter 6, Corollary 1.6). The problem of finding all
such Laurent series expausions of a given Laurent polynomial was posed in [12] (Chapter 6,
Remark 1.10).

Let flz1.....Zn) = D .c5az® be a Laurent polynomial. Here S is a finite subset of
the integer lattice Z"™ and each coeflicient a, is a non-zero complex number. The Newton

n

polytope Ny of the polynomial f is defined to be the convex hull in R" of the index set S.

The following result was obtained in [8].

Theorem 5.1 Let f be a Laurent polynomial. The number of Laurent series expansions with
the center at the origin of the rational function 1/f 1s at least equal to the number of vertices
of the Newton polytope Ny and at most equal to the number of integer points in Ny.

In the view of Corollary 1.6 in Chapter 6 of [12], Theorem 5.1 states that the number of
counected components of the complement of the amoeba Ay is bounded from below by the
munber of vertices of Ny and from above by the number of integer points in Ny. The lower
bound has already been obtained in [12]. In this section we describe a class of rational functions
for which the number of Laurent expansions attains the lower bound given by Theorem 5.1. Our
main tool is Theorem 2.1 which allows one to describe supports of the Laurent series expansions
of a rational function which can be treated as a solution to a generalized Horn system. In the
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following three examples we let uy,....u, € Z" be linearly independent vectors, p € N and
let gy a, € C* be nonzero complex numbers. We denote by U the matrix with the rows
T S .y, and use the notation (A;) = A= I[UT}_ and v; = Ay + -+ + Ay The conclusions
in all of the following examples can be deduced from Theorem 7 in [14].
Example 5.2 The function y;(z) = (1 — a2 — -+ - — a,z®) " satisfes the following system
of the Horn type

al.r“l 91

(b +- -+t + Dy(z) = A | ... | y(z) (5.1)

P v B,
Indeed, after the change of variables (&1, ..., €)= & ... &) (whose inverse is § = %) the
system (5.1) takes the form

a:&; (B, + -+ +0g, + 1) y(€) = Oy(€). i=1.....n. (5.2)
The function (1 —a;6; — -+ —ané,)”" satisfies (5.2) and therefore the function y(z) is a

solution of (5.1). The hypergeometric system (5.1) is a special instance of systems (5.3) aud (5.5).
We treat this simple case first in order to make the main idea more transparent.

By Theorem 3.3 the space of holomorphie solutions to (5.1) has dimension one at a generie
point and hence y,(x) is the onuly solution to this system. Thus the supports of the Laurent
series expansious of i, (z) can be found by means of Theorem 2.1. There exist n—1 subsets of the
lattice Z" which satisfy the couditions in Theorem 2.1 and can give rise to a Laurent expansion
of y1(x) with nonempty domain of convergence. These subsets are Sy = {s € Z" : (\s)z >

Ot =ik sy nyand 5 ={s €2 ims;+- s+ 10, (As)i 20,i #j}i=1,..., .
Besides 5. . ... S, there can exist other subsets of Z" satisfying the conditions in Theorem 2.1.
(Such subsets “penetrate” some of the hyperplanes (As); = 0, v18; +- - + 1,8, + 1 = 0 without

intersecting them: subsets of this type can ouly appear if | detU| = l). However, none of these
additional subsets gives rise to a couvergent Laurent series and therefore does not define an
expansion of y;(z). Indeed. in any series with the support in a “penetrating” subset at least
one index of summation necessarily ruus from —oc to oc. Letting all the variables, except for
that one which corresponds to this index. be equal to zero, we obtain a hypergeometric series
in one variable. The classical result on convergence of one-dimensional hypergeometric series
(see [10]. § 1) shows that this series is necessarily divergent. Thus the number of Laurent series
developments of y;(x) cannot exceed n + 1. The Newton polytope of the polynomial 1/y(x)
has n + 1 vertices since the vectors u,,....u, are linearly independent. Using Theorem 5.1 we
conelude that the mumber of Laurent series expansions of y,(z) equals n + 1. Thus the lower
bound for the number of connected components of the amoeba complement is attained.

Example 5.3 Recall that # denotes the vector (Ilar ..... Tnges ) and let {\9 denote the
ith component of the vector Af. Let § be the differential operator defined hy
G=(A8), +---+(AG),_, +p(AF), +

The function yo(z) = (1 — a12** — -+ + — @porz® )P — a,z¥") " is a solution to the following
system of differential equationus of hypergeometric type

a;z%Gy(z) = (AB)y(z), i=1,....n—1,

i | T @) Vel = pﬁ}(p(.w)n—j) y(z).
1

=0

(5.3)
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Indeed, the same monomial change of variables as in Example 5.2 reduces (5.3) to the system
aié}-gy{ )=6§J[ ), =1, ..., 01,
Bl " : (5.4)
n&n H(S +3) |ul=) = I (Pbe. +3) ) y(2).

=0 j=0

where G = e, + -+ b, +pbe. + p. The system (5.4) is satisfied by the funetion

(1 —a16; — -+ — @ue1nc1 P — 34&) " This shows that yo(z) is indeed a solution to (5.3).
Thus the support of a Laurent expansion of y»(z) must satisfy the conditions in Theorem 2.1.
Notice that unlike (5. ) the system (5.3) can have solutions supported in subsets of the shifted

lattice Z" 4+~ for some v € (0, 1)™. Yet, such subsets are not of interest for us since we are looking
for Laurent series dev elopmentb of yo(z). The subsets Sp = {s € 2": (As); =2 0,1 = l. .
and §; ={s € Z": (Ash+++ (Ash-1 +pAshh+p <0, (As)i 20, i # j}, j=1,..., n

satisfy the conditions in Theorem 2.1. The same arguments as in Example 5.2 show that no
other subsets of Z" satisfving the conditions in Theorem 2.1 can give rise to a convergent
Laurent series which represents ys(x). This yvields that the number of expausions of yu(x) is at
most equal to n + 1. The Newton polytope of the polynomial 1/y»{z) has n + 1 vertices since
the vectors uy,.... u, are assuied to be linearly independent. Using Theorem 5.1 we conclude
that the number of Laurent series developments of yo(z) equals n + 1.

Example 5.4 Let H be the differential operator defined by H = p(A8), + -+ — p(Af),
Using the same change of variables as in Example 5.2, oue checks that
ya(z) = ({1 — a1z )P — gz — -+ — a,z") " solves the system

@ (A9), +303(a) = (49), y(a),

a3 H H ) +H+7) | ylz) =
§=0 (5.5)

(A9), (pff(s{ —p—l—j}) SR T,

=0

Analogously to Example 5.2, we apply Theorem 2.1 to the system (5.5) and conclude that the
number of Laurent expansions of ys(z) at most equals n + 1. Thus it follows from Theorem 5.1
that the number of such expansions equals n + L.

Example 5.5 The Szegd kernel of the domain {2z € C* : |2 + |23) < 1} is given by the
hypergeometric series

].—{2‘:]_——252—“2) s1_81
h{zy,z) = Z}[]F.?bl-i—l TmEl) * =

(1 —z1 —x2)(1 + 27100 — 22 — x3) + 8110
2 :
(L — 21 — z3)° — 42:175)

(See [2]. Chapter 3, § 14.) This series satisfies the systemn of equations

i (261 + 265 + 3) (26, + 26, + 2) y(z) = 26,(26; — )y(z). i=1.2.
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There exist three subsets of the lattice Z" which satisfy the conditions in Theorem 2.1, namely
{s€2?:5 20,520}, {s€2?: 512051 +5+1<0},{s€Z? 520,51 +5+1<0}
Using Theorem 2.1 we conclude that the number of Laurent expansions centered at the origin
of the Szegd kernel (5.6) at most equals 3. The Newton polytope of the denominator of the
rational function (5.6) is the simplex with the vertices (0.0), (4.0). (0.4). By Theorem 5.1 the
wunber of Laurent series developments of the Szegd kernel at least equals 3. Thus the munber
of Laurent expansions of (5.6) (or, equivalently. the number of connected components in the
complement of the amoeba of its denominator) attains its lower bound.

Example 5.6 Let u; = (1.0}, us = (1. 1) and counsider the system of equations

y(z) = IJ%—IQ%)y(I)-

Iz%) y(z). (5.7)

z**y(z)

The principal symbols Hy(x. z), Ha(z. 2) € R[z] of the differential operators defining the system
(5.7) are giveu by H,(z. 2) = —x,2) +Tp2g. Hy(x. 2) = —T92,. By Theorem 3.3 the dimension of
the solution space of (5.7) at a generic point is equal to 1 since dimg R/(H(z. z), Ho(z. 2)) = 1
for z1z2 # 0. For computing the solution to (5.7) explicitly we choose v = ) and consider the
corresponding system of difference equations

¢(s + ug)(s2 + 1) = ¢(s). -
The general solution to (5.8) is given by ¢(s) = (T(s1 — s2 + 1)T(s2 + 1)) 6(s). where 6(s) is
an arbitrary function which is periodic with respect to the vectors u;. us.
There exists only one subset of Z? satisfving the conditions of Theorem 2.1, namely § =
{(51,82) €22 : 5, — 59 > 0, 53 > 0}. Choosing ¢(s) = 1 and using (4.2), we obtain the solution
to (5.7):

_ bty _ i
v Z> T ) T PRt P, o)
s; =8z 2 0,
g =21

It is straightforward to check that the solution space of (5.7) 1s indeed spanned by (5.9).
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PASPAXKEHHBIE THIIEPTEOMETPITYECKHWE CUCTEMBI

Tumyp Caubikos
Cubupcknii dhenepanbHblii YHUBEPCUTET,
np. Ceoboaneiii, 79, Kpacrospck, 660041, Poccus, e-mail: sadykov@lan.krasu.ru

AnnoTtanna. OnucLiBaeTes NOONOT K H3VUEHHIO TeOPUH THIepreoMeTpuueckux dbyukuuli oT nec-
KOJILKUX [epeMelliLX ¢ noMomeo ofofuenuoll cucremul tuddepennuanunx ypasuenuit Tuna Top-
na. Homywena dhopuyna 1058 BLIMUCIENNS PAIMEPIOCTH NPOCTPAIICTEA Delleluil 3Toll CHeTeMEL, OCLIo-
BLIBASACL 1A KOTOPOH CTPOMTCH B #ABIOM BHIAE GA3MC €€ NPOCTPALCTBA FOJOMOPKILIX pellendil npu
HEKOTOPLIX OIPAHHYElNAX HA HAPAMETPLl CHCTEMLL

Kaiodesrle ciaoba: runepreomeTpudeckue ynxiuy, cucTenmbl dudiepellialblbxX ypaBleini
tuna lopua, cucrema Memmuna.



