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Abstract. Second order elliptic systems on the plane are considered. The notion of generalized
potentials of double layer for these systems is introduced.
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1 Second order elliptic systems

Let us consider the elliptic system of second order

- §%u
Zaii# =0, u=(t,....%);, Ty=71,T9=1y,
521 dl‘;{dl‘j

with constant and only leading coefficients a;; € R In view of the elliptic condition

det (3" ayhd) £0. Ah €R,

the characteristical polynomial
x(2) =detp(2). p(z) = ay + (4o + ag1)z + a9y 2’

has 1o real roots. Let o4 denote a set of all these roots in the upper half-plane.
Let D C C? be a finite domain with a smooth boundary T = dD. As it’s well known the
Diriclilet problem
”|F =i
isn't always Fredholm. The first example of this type belongs to A. V. Bitsadze[1]. He noticed
that the homogeneous Dirichlet problem for elliptic system with coefficients (I = 2)

= =
1] = —lgy = 1 1y = (g = :FJ_ 0

in the unite circle has infinitely linear independent solutions.

Later A. V. Bitsadze introduced the notion of the so-called weakly connected elliptic systemns
for which the Dirichlet problem is Fredholn. According to modern elliptic theory this requirement
simply implies that the corresponding Shapiro- Lopatinski condition holds|2]. It's convenient
to formulate this condition in the following way.

The elliptic system is weakly connected iff
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det {/:p'l{)\)d)\} #0.

The Bitsadze example stimulated the definitions of the various classes of elliptic systems for
which the Dirichlet problem is Fredholm. The most important of them was the notion of strong
elliptic system introduced by M. I Vishik[3]. They are defined by the condition of positive

2
Z ﬂgj)\;‘)\j =)

ij=1

definiteness of the matrix

for all Ao € R, || + |A2| # 0.
In this case the matrix p~'()) is also positive definite. so these systems are really weakly
counected. More restriet condition was introduced earlier by C. Somigliano|4] and is expressed

in the form
a;;  ag
a= e W |
31 Qo3

The intermediate position between these definitions occupies the notion of the strengthened
elliptic system [5]. By definition this system have to be elliptic and the matrix a > 0. Note
that another classification of elliptic systems in the case [ = 2 is given by Lin Wei[6] and Wu

Ci-Quian|7].

2 Generalized potentials of double layer

Let the elliptic system he weakly connected. As it will be said earlier then the Dirichlet problem
is Fredholn. More exactly the following result is valid [8]. Here and helow C7Y(E) implies the
Holder class U.yCH*(E).

Let T = 8D be Lyapunov contour i.e. its inner normal n(t) = ni(t) ~ins(t) € CTT) and
let f € CTYT). Then homogeneous Dirichlet problem has a finite number linear independent
solutions uy., .. .. u, € C*(D) and there exist a real vector- valued linear independent functions
Plyeens gn € C*O(T) such that nonhomogeneous Dirichlet problem is solvable in CT(D) iff

(fg:)=0,1<1<mn,

where
(f,0) = [ F()g(t))dt].
JI

The case of strengthened elliptic system is remarkable as n = 0 for these systems. In other
words the Dirichlet problems for a strengthened elliptic system is uniguely solved.

The main result of this talk is the following: if f € C(T') satisfies the orthogonality conditions
then the Dirichlet problem is solvable in the class C(D).

Our approach is based on using generalized potentials of double layer for the elliptic system.
From the weakly connected property it follows the following lemna: there erists the unique
matriz J € C*! such that

ay; + {ﬂl"! + (121}-]+ {IQQ;JTZ =,

o(J) =04, det(lm.J) #0.
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Recall that o, denotes a set of all roots in the upper half-plane of the characteristical
polynomial y(2) = detp(z), p(z) = an + (a1 + an)z + amz?. The matrix J is called a
characteristical matrix of the elliptic system. If it is diagonal then the system reduces to [
scalar equations. More exactly the exists an invertible matrix ¢ such that all matrixes ca;; are
diagonal. So we may suggest that J is not diagonal.

Let us put
Ty (f)gl + ng(f}sz(

€12

H(E) =Im [(—&1+ &) (61 + 52'”_12'

where 1 implies the unit matrix and n is the unit vector of inner normal. Then the integrul

Q(t.€) = £).

(Po)(2) =§ /I:Q{t.t _2)e()d, zeD,

describes solutions of the elliptic system. Note that for H = 1 this integral corresponds to the
classical poteutials of double layer for Laplace equation. The following theorem shows that Py
plays an analogous role for the elliptic system.

The integral operator P is bounded C(T) — C(D) and

(Po)* (to) = wlio) + [ Q(t.t — to)o(®)|dt], toeT.

Let Ky imply the integral on the right hand side. Under assumptions n(t) € CTT) the kernel
E(ty.t) = (t—1))Q(t. t—1ty) belongs to C*N[ xT') and k(t.¢) = 0. So the operator K is compact
in C(T).

Theorem. The erist a finite-dimensional space X C CTY(D) of solutions of the elliptic
system and a space Y C C*Y(T) of the same dimension such that each solution u € C(D) of
the elliptic system is uniquely represented in the form

u=Pyp+u, u€X,

where p € C(T) satisfies the orthogonality condition (p.g) =0.g€ Y.

If the system is strengthened elliptic then in this representation X =0, ¥ = 0.

The theorem shows that the Dirichlet problem is equivalent to the following system of
Fredholm integral equations:

m
;f-s—Kp—!-Z)\izq:f.
1

(p,9:)=0, 1=1,...,m,

where u,,..., Uy, and g, ..., gy, are basises of X and Y respectively.
In the case | = 2 the matrix H(£) can be deseribed explicitly. In this case there are only
two possibility for o, when (i) o, = {v1.10}. 11 # . and (ii) o, = {v}. So the exists an

invertible matrix b € C**? such that

: 1_ [ 0 5 g, 2 1
(7) I~ = ( F )._ (id) bIb™ = ( 0 )
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The case bJh™! = v is excluded as the matrix .J is not diagonal. Note that the matrixes

o LR il TR s
El—b(u {J)b 7 Eg—-b(o [))b ’

dou't depend on the choice of b.
In this terms we have:

(i) H(E) = (IJHQVQ)Q{E'VQ) + Im[(1 — v,)g(&, 11)g(€, v2) Bl
(ii) H(€) = (Im®v)g(€, v) + Tm[g*(€, v) By),
where g(£.v) = [£(& + vé2) ™"
3 Applications to the plane elasticity

The plane elastic medium is chiaracterized by the displacement vector u = (uy, up) and by stress
and deformation tensors

gy J3 - £1 £3
T = 5 £ = 7 .
T3 T2 E3 £2
where ) ) )
o du oo Our | Ou
£i = = 5 I=J..2._ 2;3= = o e
dIi ().T:Q dIg

They are connected by Hooke law i.e. by linear relation

] v x5
a=| a; oy ag | >0,

¢
I
o
[

5 kg (k3

where & = (71, 09, 03), &= (21,22, 223).
If the external forces are absent then the equilibrium equations have the form

do) | oy

=1,
(3I]_ 8132

where o(;) means j—column of the matrix o. Using the Hooke law we receive the Lame system

Pu Fu Pu :
l5111@? + (@12 + ﬁm)m +022@ =

for the replacement vector u with the coefficients a;;. defined by the matrix

Gy Oy Qg Qg

a = a1 12 . Qf 3y 03 Q3
Qg Oy Gy Op

ra 5 Q5 2

This system is strengthened elliptic and rang a = 3.
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The elastic medium is called orthotropic if o = ag =0, @z + oy £ 0, and isotropic if oy =
o =10. a1 = ay = 2a3+0s. We can also point out the special case a; = ag =10, az+oas =0,
I this case the Lame system reduces to scalar equations

Puy Py 0 Py 9Py 0
o — ts——=10. o4——7F as—— =1().
Y or? e ¥ o2 2 oy2

So this case we put away below.
Let us consider the characteristic polynomial of Lame system

/ b ; 2 L ]
z) =011 + (1 +a91)2 — amz” = ;
Pl ) 11 + (212 21) 22 (P:’. P ) .

where py(z) = a; + 2042 + 0322, po(2) = 03 £+ 2052 + 227, pa(2) = 0 + (a3 + ay)z ~ a2°.
In the case (i) we can put

B 1 ( —pz{vﬂpa(w) —PQ_(VI]I’Z_(V?) )
' p(n)ps(1) — pa(n)ps(v) \ —ps(vilps(ve)  pa(e)ps(n) )

if one of the following conditions (*)
2 2 o R ; ik ) =5 -2
o < 010y, 0F < G0y, oy = Ogovs. Oplog + ay) = 205,

disturbs and

B = 1 ( _pl{VQ:'p:i(Vl) —P'd(Vl)Ps_(VQ) )
: 131{1‘/1)1)3(!/2) — pi{va)ps(es) —p(v)p()  pr(nn)ps(ve) ?

if one of the following conditions (%%)
2 2 - S ; ; e
(o < k12, Cig < 1€y, k1lks = eylkg, (_1]_((_13 7 (14} = 2(_1(_-'

disturbs.
In the case (1) we can put

- 1 p2(¥)ps(v) P%(V}
= pa(v)ps(v) — po(v)ps(v) ( —rv)  —p(v)ps(v) )

Note that fulfilments of both couditions (=) and (=#) is equivalent to the special case a; =
g = 0, az + oy = 0 when the Lame system is diagonal.
In the orthotropic case the polynomial p; are simplify:

plz) =01+ a2’ pa(z) = a3 + a2’ pa(z) = (03 + ay)z.

so in this case

E = (g + ag)™! _PQ'(VIJ{QB B ) —Ifufvl }pQ(VQ‘}
YT apa(ve) — vape(1n) —(es +as)’rive  pa(w)los + ayn

E (as +a4)”? ( —pi(w)(as + sy —(as +ag)’nim, ) ]

- vopy (1) — vipr (1) —p1(v1)pr (1) () (o + o)
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respectively to (%), (%) and

1 ( viag +az?) (ag+ay) Hay + az?)? )
Ei=—fr—— 4 '

T ag? —ap \ —(a3 +ay)v —v{ag + azr?)

Especially the simple picture we have in the orthotropic case when v = i and a; = a, = 2a3+ay.

In this case
1 I ! a1 + o
=2 Y. e PO
= 1, =y o] — Oy

(10 1 (-6 24
H@"(ﬂ 1)‘.%52( %6 5%—&3)'

Another function theoretical approaches for orthotropic Lame system were suggested by R

P.Gilbert[9, 10].

and therefor
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OBOBIIEHHBII TIOTEHITUAJI JIBOMTHOTO CJI0A A/14
SININIITUYECKHWX CHUCTEM BTOPOTO IIOPAIKA

A.TI. Coungaros
Benropoackuii rocynapcTEeHHbIR YHUBEPCUTET,
yn. Mobeast, 85, Benropoa, 408015, Poccus e-mail: Soldatov@bsu.edu.ru

Annoranusd. Pacemarpusaiores siutunTHdeckue c1ado ceasaninle (no repmuiotorun A.B. Bu-
1aa3e) CHCTEML! BTOPOro HOPAIKA ¢ NOCTOANILIME (M TOALKO cTapuimit) koadihuunenTamu, s sTux
CHCTeM BEOOUTCH HOLATHE NOTeNIUAI0E ABORIOT0 CJI0M, LI CBA3AII0e ¢ VIIAMENITANLILIM PellellHeM.
Quo no3poageT pPeayuroBaTh 3adady Jupuxie K 3KBHBATENTHON cHCTeMe MUTErPalLlLIX VPABIenu
DpegroanMa 1a rpaiuie ofIacTi,

KnrodeBble ¢10Ba: 31 IHITHYECKHE CHCTEME] BTOPOro HOPSAKA, CHCTeML! 1ans, HOTeluas J8oi-
LOro CI0d, 3a7ada JupHxe.



