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SHARING SET AND NORMAL FUNCTION OF HOLOMORPHIC
FUNCTIONS

Jun-Feng Xu
Department of Mathematics, Wuyi University,
Jiangmen, Guangdong 529020, China, e-mail: lvfeng@mail.sdu.edu.cn

Abstract. In this paper, we use the idea of sharing set to prove: Let F be a family of holomorphic
funetions in the unit dise, a; and az be two distinet finite numbers and a1 +a» #£ 0. If for any f € F,
E¢(S) = Ef(S). S = {a1, az}, in the unit disc, then f is an a-normal function.
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1 Introduction and main results

Let D be a domain in C and let F be a family of meromorphic functions defined in D. The
family F is said to be normal in D, in the sense of Montel, if each sequence {f,} C F contains a
subsequence { f,, } that converges, spherically locally uniformly in D, to a meromorphic funetion
or to oo.(see. [10])

In this paper, we assume that f. g are two meromorphic functions on D and 5;, 5, are
two sets. We denote E¢(S1) C Eo(S2) by f(2) € S1 = g(z) € So. If E¢(S1) = E4(S»). we
denote this condition by f(z) € S) & g(z) € S,. Similarly, if E¢(5;) = E (S;). we denote

this condition by f(z) € §1 = g(z) € S». If the set S hLas only oue element, say o, we deuote
f(z) € § by f(z) = a (see [15]).

Schwick[14] was the first to draw a counection between values shared by functions in F (and
their derivatives) and the normality of the family F. Specially, he showed that if there exist
three distinet complex numbers a;, as, ag such that f and f' share a;(j = 1,2,3) in D for each
f € F. then ¥ is normal in D. Pang and Zalcman [9] extended this result as follows.

Theorem A. Let F be a family of meromorphic functions in a domain D, and let a,b,c.d
be compler numbers such that ¢ # a and d # b. If for each f € F we have f(z) =a< f'(z)=b
and f(z) =c< f'(z) =d, then F is normal in D.

Definition 1.1 (see. [6, 7]) A meromorphic function f is a normal function in the unit disc
D if and only if there exists a constant C(f) (which depends on f) such that

(1 =[2*)f(=) < C(f):
where fA(z) = |g'(2)|/(1 + |g(2)|?) is the spherical derivative of f.

In 2000. X.C. Pang [8] considered the normal function by using the condition of share values.
Theorem B. Let F be a family of meromrophic functions in the unit disc, a1, a2 and az be
three distinct finite numbers. If for any f € F,

Ff(“i] Lo Ff'{ﬂx').- i=123,
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in the unit disc, then there erists a positive M, such that for every f € F, we have
(1= 2D fi(z) < M,

where M depends on a;, ay and a;.
In fact, from the proof of Theorem B, one can get the following corollary.

Corollary 1.2 Let F be a family of holomorphic functions in the unit dise, a; and as be two
distinct finite numbers. If for any f € F,

Ef(a;) =Ep(a;), i=12,
in the unit disc, then the conclusion of Theorem B holds.

Recently, there exist a lot of studies in using the shared set to obtain the normal family(see.
[2, 4, 5]). X.J. Liu obtained a normal function by using the share set § = {a;, as, a3} corresponding
Theorem B. Naturally, we ask whether there exists a normal function by using the shared set
S = {a;.as} corresponding to Corolllary 1.27 In this paper, we study the question and get the
following result.

Theorem 1.3 Let F be a family of holomorphic functions in the unit disc. a; and ay be fwo
distinct finite numbers and a; —a, # 0. If forany f € F,

Ey(S)=Ep(S), S={a,as},
in the unit disc, then there ezists a positive M, such that for every f € F, we have
(1~ o) f(2) < M,
where M depends on S.
In the following, we give a exawple to show the condition a; + ay # () is necessary.

Example 1.4 ([5]) Let S ={-1.1}. Set F={fu(z): n=2.3.4....}. where

b lege m—F g B )
Filz)= P A D={z:|2|<1}.

Then, for any f, € F, we have
n?[f2(z) — 1] = f2(z) — L.
Thus fn and f) share S CM, but f, is not a normal function in D.

From Case | in the proof of Theorem 1.3, we can easily get the following corollary.

Corollary 1.5 Let F be a family of functions holomorphic in a domain D, let a be a nonzero
finite complex numbers. If for all f € F, f and f' share § = {0, a} IM, then the conclusion of
the theorem 1.3 holds.

The following example shows that it is necessary that the complex mumbers a is finite.
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Example 1.6 Let § = {0.0c}. Set F={&": n=1.2....} in the unite disc A, thus f, = "
and f), = ne™ share S, but f is not a normal function in A.

Definition 1.7 ([11]) Given 0 < & < oc. if there exists a constant Co(f) such that
(L= [21*)*f4(2) < Calf),

for each z € D, we say that f is an a-normal function in D.

a-normal functions may be viewed as the generalizations of normal functions. If we denote
by N the class of the normal functions in D and denote by N® the class of the a-normal
functions in D, it is obvious that
N® Cc N CN™
for 0 € @7 < 1 < ay < oo. The above inclusion relations are strict(see.[12]). Similarly, we can
get the following generalized result.

Theorem 1.8 Let o > 1, and let F be a family of holomorphic functions in the unit disc, a
and ag be two distinct finite numbers and a; + ag £ 0. If for any f € F,

E{(8)=Ep(S). S={a, a0},
in the unit disc, then there erists a positive M, such that for every f € F, we have
(1—]21*)*F(2) < M,
where M depends on S.

2 Lemimas

Lemma 2.1 ([9]) Let F be a family of functions meromorphic on the unit disc, all of whose
zeros have multiplicity at least k, and suppose that there erists A > 1 such that [f%(z2) < A
whenever f € F and f(z) = 0, f € F. Then if F is not normal, then there exist, for each
0< A<k,

(a) a number 0 < r < L;

{b) points zy. zn < 1;

(c) functions f, € F, and

(d) positive number p, — 0 such that p7* fo(zn + 0.6) = gn(€) — g(€) locally uniformly,
where g is a nonconstant meromorphic function on C such that g*(€) < g*(0) = A+ 1.

The normal lemma is for g-normal functions corresponding to Lemma 2.1,
Lemma 2.2 Let F be a family of functions meromorphic on the unit disc, all of whose zeros
have multiplicity at least k, and suppose that there exists A > 1 such that | f%*)(2)| < A whenever
feFand f(2) =0, f €F. Then if F is not an a-normal function, then there exist, for each

0<A<kandl <a < oo, there erist a sequence of points {z,} in D and a sequence of positive
numbers {p, } such that |z,| — L, p, — 0. and the sequence of functions

{g(C)} = P;Af(zn (N = |Zn|2)QPnC)
converges spherically and locally uniformly to a non-constant Yosida function in the (-plane.

Remark. The case ) £ A < k is first proved by Chen and Wulan, see [12, 13| for a detail.
We can prove the above lemma by the similar method with [13].
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3 Proof of Theorem 1.8
Suppose, to the contrary, that we can find |z,| < 1 and f,, € F such that

gn(2) = falzn + (1 — [2n[*)*2) (3.1)

satisfy

Jlim ¢*(0) = lim (1~ |2u[*)* f*(2n) = co.

Hence {g,(z)} is not normal in the unit. By Lemma 2.1, we can find the positive munber r,
0 < r < 1; the complex numbers (,, [(x| < 1: pp — 07 and g, € F such that

Gn(C} = gn(gn +pnC} = fn(zn i 2 {l = znlz}ﬁCn e (]- — |2n Q)Qﬁng)

locally uniformly to a nonconstaut entire function G(¢) on C.
We know G is a nonconstant entire function. Without loss of generality, we can assume that
G — a; has zeros in C. Let (; is a zero of G — a;. Consider the family

Gn(¢) —a

([} zn|2}aﬁn}l

We claim H is not normal at . Iu fact. G({y) = a; and G({) £ a;. From (3.1) and Hurwitz's
Theorem, there exist (. {, — {y and G,((,) = a;. Then H,((,) = 0. However, there exists
a positive number § such that Ay = {z € D: 0 < [( — (| < 6} € D and G(¢) # a; In A,
Thus for each { € Az, Go(¢) # a; (for n sufficiently large}. Therefore for each ¢ € Ay, we have
H(({) = oc. Thus we have proved that H is not normal at .

Noting that

H= {Hn(c} tHo(€) =

Hy(¢) =0 = Hy(¢) = a; or ay,

and using the Lemma 2.1 again we can find 7, — 7, 1, — 0 and H, € H such that
Filf) = H, (7 + 1n€) - Gn(mn + pa€) —
Mn Tn
Falzn 4+ (1 — 201926 + (1 — |20/ 00 + 10€)) — a1
{l S zniz)&pnnn

locally uniformly convergence to F(€) on €', where F is a nonconstant entire function such that
F*(&) < F¥(0) = M. In particular p(F) < 1.

We claim that

(1) F ouly has finitely mauy zeros.

(2) F()=0< F'(&) = a; or as.

We first prove Claim (1). Suppose (; is a zero of G({) — a; with multiplicity k. If F(€) has
infinitely many zeros, then there exist k + 1 distinct points & (j = 1,--- ,k + 1) satisfying
F(&)=0(j=1---.k+1). Noting that F(§) # 0, by Hurwitz's Theorem, there exists NN, if
n > N, we have F(§,) =0 (7= 1. . k+ 1) and Gu(7 + mnéjn) — a1 = 0. We have

nlEI:];ch +Tfn§jn = C{]. (_]I' =1+ k+ ].)

then ( is a zero of G({) — a; with multiplicity at least k + 1. which is a contradiction. Thus
we have proved Claim (1).
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Next we prove Claim (2). Suppose that F(&,) = 0, then by Hurwitz's Theorem, there exist
En, En — &p. such that (for n sufficiently large)

fn{zn T (l - zn|2)c‘<n e {l — zn|2)aﬂn(7n T rfngn)) —

- - =1
(1 — |zn J]Qpnrfn

Foln) =
Thus fo(z, + (1 — |2,/2)%C + (1 — |2:]2)% 0. (7 + &) = a;. By the assumption, we have
Falzn + (L= |20]%)%Ca + (L — |2a]*)*pn(7n + 7)) = a1 o1 a0,
Lence
F'{&) = nh_f_%c Falzn + (1= |2a")%Gn + (L = [20]*)*pn(Tn + 70én)) = a1 or az.

Thus we prove F(§) =0 = F'(§) = a; or as.

In the following, we will prove F'(£) = a; or as = F(£) = (.

Suppose that F'(&) = a;. Obviously F' £ a;. for otherwise F¥(0) < |F(0)| = |ai| < M,
which is a contradietion. Then by Hurwitz’s Theorewn, there exist &,, £, — &, such that (for n
sufficiently large)

Fo(én) = fulzn + (1 = |2a[*)%Ca + (1 = |20*)* (70 + Mnn)) = @1,
It follows that Fa(€x) = fa(za + (1 — |2/2)%Ga + (1 — [2a[2)pa(7 + Tan)) = a1 or az.
If there exists a positive integer N, for each n > N, we have
Falzn + (1= [2a[")%Ga + (1 = [2a]*)*pa(70 + 1n€n)) = a2.
Then

7 fn{zn z3 (l i zn|2}QCn + {]— . |2n Q)ijn("—n BB ”n‘sn)) — 0 _
Fllo) = "‘h‘r‘r:‘lc (1 — [2n[*)®pntpm e

it contradicts with F'(§,) = a;. Hence there exists a subsequence of {f, }{which, remumbering,
we coutinue to denote by {f,}) satisfying that

Falzn + (1 = |20*)%Cn + (1 = |2[*)* pn(7n + Tn)) = a1
Thus we derive

I . 2y 0 N Iy _ _
F(E[]) = lim fn[:zn AL |z”| ) €n (l an } Pn(’n T Tann:':' ay

s (l — |zn 2)Qﬂnﬁ‘n

=0,

which implies F' = g = F = (). Similarly, we can get F' = a, = F = (. Hence we have proved

claim (2).

Since p(F') = p(F) < 1. then by the Nevanlinna’s second fundamental theorem,

— 1 _ ]
+ N(r, ———
(7, Fr—a,

)+ N{(r, ;) + O(logr) (3.2)

F'—a, CF'— s

)+ S(r, F")
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From Claim (1), we get N (r, +) = O(logr). Thus T(r, F') = O(logr), it is clear that F is
a polynomial.

In the following, we consider two cases:
Case 1: aias = 0. Without loss of generality we assume a; = (. We know that F' has
zeros, then F las multiple zeros. We assume deg(F) = n, then T(r. F') = (n — L)logr and

S(r.F")y = Q(1). By (3.2) we get
T(r.F') = (n— L)logr < N(r, %) +0(l)<(n—1)logr

Thus we derive that F only has one multiple zeros with multiplicity 2 and F' ouly has one zero
with multiplicity 1, which yields that n = 2. Set F' = B(£ — &), then F = (B/2)(€ — &)7,
which contradicts with F' = a;, = F = (). This completes the proof of Case 1.

Case 2: ayap # 0. We first prove F = (0 = F' = a; or gy. From aja, # 0, we get F = () —
F'" = n; or a;. Thus we only need to prove F' =gy or as — F = ().

Suppose & is a zero of F' — a; with mmultiplicity m. By Rouché theorem, there exist m
sequences {£,}i=1.2--- .m) on Dsyo = {€: | — &| < §/2} such that F}(&r) = a1. Then

f:a{zn s {l - |zn|2)agn - U— — |zn 2)apn{"—n T Tfnfin)) = F;(Ein} =a {i =120 smE).

By f and f’ share {a;. ax} CM, we get f’ —a; only has simple zeros. That is &, # (1 <i #
j < m). We obtain

Falzn + (L= [2al*)Ca+ (1= |2a/) %0070 + i) = @1 0r @ (1=1,2,--- . m).
We claim that there exist infinitely many n satisfying
Falzn + (1= [2a*)2Cn + (L = |2a/*)%pn(T0 + Muin)) =1 (i=1,2,---.m).  (3.3)
Otherwise we may assume that for all n, there exist 7 € (1....,m) satisfying
Falzn + (L= |2[*)6a + (1 = [2*)® pu (T + Mnbin)) = 2.
We take a fixed number ! € (1,....m) satisfying (for infinitely many n)
Falzn + (1= |2a[*)%Ca + (1 = [2/*)* pu (T + Wnbin)) = 2.

Hence

Flg) = B fé{zn + (1 — |2n|?)Gn + (1 _ \|2r1i2)a(jn{"—n + Mnin)) — @1
n—+ao (1 — |2a)2)®pn1pn
I g — iy
= lim ———— =
n—ze (1 — [22[2)2 putn

which contradicts with F'(&;) = a;. This proves (3.3). Therefore,

Fn(gin} — U. (‘j il M ._Tn)
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bin F&n (LLi# 7 <m). As n — oo, we get & is a zero of F with multiplicity at least

m. This proves F' = a1 — F = 0. Similarly we can get F' = as — F = (). Thus we have proved

F=(s= Fl'=aqa; oras.

From this we know F' — a; and F' — ay only have simple zeros. Suppose that deg(F) = n, then

n =

2n—1)and n=2. Set F = A(§ —&)(£ — &), then F' = A(26 — & — &).

Without loss of generality, we assume that F'(€,) = a; and F'(&) = ay, we get a; +a, = 0.

It is

a contradiction.

Thus we cowmplete the proof of Theorem 1.3.

=]
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