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Abstract. In this paper, we study the uniqueness of meromorphic functions that share three values
or three small functions with the same multiplicities and prove some results on this topic given by G.
Brosch, X. II. Iua and M. L. Fang, etec.
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1. Introduction and Results

It is assumed that the reader is familiar with the usual notations and the fundamental results
of R. Nevanlinna theory of meromorphie function as found in [5].

Let f. g be noncoustant meromorphic functions. We say that a meromorphic funetion
a(z)(£ oc) is a small function of f if T(r.a) = S(r, f). U N(r. 1/(f —a)) = S(r, ), then we say
that a is an exceptional function of f. Moreover. we denote by N(r. f = a = g) the counting
function of those common zeros of f —a and g — a, where zp is counted min{p, g} times if
zy 18 a common zero of f —a and g — a with multiplicity p and ¢ respectively: as usual, by
N(r.f = a = g) the corresponding reduced counting function; and by Ng(r, f = a = g) the
counting function which “counts™ only those common zeros of f — a and g — a with the same
multiplicity in N(r, f = a = g). These notations will be used throughout the paper.

Let f. g be two nonconstant meromorphic functions, and let a be a small function of f and
g or a be a constant. We say that f and g share o CM if f —a and g — a have the same zeros
with the same multiplicity: if we ignore the multiplicity, then we say that f and g share a AL

For the statement of our results, we may need a slightly generalization of the definitions of CM
and IM (see [6],[8]).

I 1997, Hua and Fang proved the following result.
Theorem Al6]. Let f and g be two nonconstant meromorphic functions, and let a;(z) (j =

L..+-,4) be distinct small functions of f and g. If f and g share a;(2) (j = 1,2,3) CM, and
share as(z) IM. Then f and g satisfy one of the following cases.

(i) f=g. (i) F=-G witha(z)= -1, (iii) F + G = 2 with a(z) = 2,
(i) (F—-1/2)(G—-1/2)=1/4with a(z) = 1/2, (v)F -G =1witha(z)=-1,
(vi) (F — 1}{(G — 1) =1 with a(z) = 2, (vil) F+ G =1 with a(z) = 1/2,

-

Remark 1. From the proof of Lemma 6 and Lemma 7 in [6]. it is easy to see that the
conclusion is still true if we replace IM with “IM” in Theorem A.
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For the meromorphic functions that share three values. G. Brosch proved

Theorem B(see [1] or [11]). Let two meromorphic functions f and g share 0, 1, oc CM. If
there exists a finite value a(# 0, 1) such that g(z) = a whenever f(z) = a. Then f is a Mbius
transformation of g.

Iu 2008, two of the present authors proved a result on this topie.

Theorem C(see [15, Theorem 2]). Let two nonconstant meromorphic functions f and
g share 0.1, oo CM. If there erists a small entire function a(z)(2 0.1.00) of f and g such
that g(z) — a(z) = 0 whenever f(z) z a(z) for p=1.2. Then f and g must satisfy one of the
following ten cases.

(1) f=g. (1) f =ag, where a(z)(£ —1), 1 are exceptional functions of f,

(i) f—1=(1l—a)(g—1). where a(z)(=Z 2).0 are exceptional functions of f,

(iv) (f —a)(g— 1 +a) = a(l — a). where a(z)(2 3). oo are exceptional functions

of f. (v)f=—gwitha(z)=-L. (vi) f+g=2witha(z) =2,

(vii) (f — 3)(g—3) = 3 with a(z) = 3, (vii)) f-g=1 with a(z) = —1,

(ix) (f—1)(g—1)=1withe(z) =2, (x)f+g=1witha(z)=3.

The main purpose of this paper is further to study the uniqueness of meromorphic functions
that share three values or three small functions with the same multiplicities, and to prove the
following three results.

Theorem 1. Let two nonconstant meromorphic functions f and g share (0.1, oo CM. If
there exists a snall function a(z)(Z 0,1, 0c) of f and g such that N(r, f = a = g) # S(r. f).
Then [ and g satisfy one of the following five cases.

(1) f=g, (1) f-g=1witha(z)=-1, (i) f+g=1witha(z) =3,

(iv) (f—1)(g—1) =1 with a(z) =2,

- ; - [ alz}v'{z)dz 1 . — fa(z)7{=)dz]
(V) f(z) = === 9(2) = ———,
where ~(z) is a noncounstant entire function, and a(z) £ —1.1/2,2.

Let f be a meromorphic funetion, let a be a small function of f or be a constant, and let
p be a positive integer. We denote by f(zg) ® 4 that 2y 18 a zero of f — a with multiplicity p.
By the above Theorem 1, we can prove the following result which generalize the small funetion
a(z) in Theorem C from entire to meromorphic, and is also a great improvement of Theorem
B. In order to avoid needless duplication, we shall omit the details of the proof of the following
Theorem 2 in this paper.

Theorem 2. Let two nonconstant meromorphic functions f and g share 0.1, oo CM. If
there exists a small function a(z)(Z 0.1,) of f and g such that g(z) — a(z) = 0 whenever

flz) = a(z) for p=1,2. Then the conclusion of Theorem C still holds.

From Theorem 2, we can immediately obtain the following result which improves and
generalizes Theorem A.
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Theorem 3. Let F and G be nonconstant meromorphic functions, and let a;(2)(j =
1.2,3,4) be distinct small functions of F and G. If F and G share a;(z)(j = 1,2.3) CM,
and if G(z) = as(z) whenever F(z) = ay(z). Then [ and g satisfy the conclusion of Theorem

3 F—oj ag—o — G=o] ag—a Qg=0; On=—0.
G where f = 515800, y= Sl igndg = Jas s,

2. Lemmas

Lemma 1 (see [16]). Suppose that fi. fo, . fu (n = 3) are meromorphic functions which

n
are not constants ezxcept for f,. Furthermore, let 3~ f;(2) = L. If fu(2) £0, and
j=1

n

Z‘\'{r. 1/fi)+(n—1) Z +o(1))T(r, fr),

j=1

wherere ILk=1.2,---.n— 1 and A < 1, then fu(z) = 1.

Lemma 2(see [lﬁ]). Let f1. fa be nonconstant meromorphic functions and ¢i1, e, c3 be non-
zero constants. If o1 f1 + cofo = ¢y, then

T(I‘ fl 4\{T l;'{fl '—\(T lffz)-F\ fl}_ (fl)

Lemma 3(see |6, Lemma 5|). Let f and g be two nonconstant meromorphic functions that
share 0,1.0c CM. If f Z g. then for any small function a(z)(Z 0.1,c) of f and g, we have

N (r._ ; i a) + N (r._ - i a) =S(r.f)

3. The Proof of Theorem 1

We suppose first that f £ g. Since f and g share (0,1, oc CM, by the second fundamental
theorem due to R. Nevanlinna, we have

A+o()T(r, f) < N(r.f)+N(r, 1)+ N 75)
< N(rg)+N(r )+ N(r.;55) < B+o(1))T(r,g).  (3.1)

Similarly, we obtain

(L+o(INT(r,g) £ (3+o(1))T(r.f). (3.2)
From (3.1) and (3.2). it follows that
S(r.f) =S(r.9). (3.3)

Set
L_ff—-a dlg—a
Y- glg—-1)°
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If p £ 0, then from (3.3). (3.4), the fundamental estimate of the logarithmic derivative, and
the hypothesis that f and g share 0. 1. oo CM, we have

T(r, ) = S(r; )+ S(r,g) = S(r; f). (3.5)
Since f and g share 0,1, 00 CM, thus by (3.4) and (3.5) we deduce that
N(r.f=a=g) S N(r.1/p)+ 5(r.f) ST(r.¢) + S(r. f) = S(r. f).
which contradicts the hypothesis of Theorem 1. Hence, we have ¢ = (), namely

flif—a) _g'lg—a)
Fif—1) " glg—1)

Noting that f and g share (). 1. oo CM. thus there exist two entire functions « and 3 such that

i i '3 =é. (3.7)
g g—1

(3.6)

Since f £ g. by (3.7) we can deduce that e* £ 1, €® Z 1 and €= Z 1. Set 7 := § — a. then
from (3.7) we have

ef —1 RN | "
f et —71" g e~ —1 (3.8)
Rewriting (3.6) as
’ i g ) (9’ f ’) :
l—ag)| ——-——|=a|=—=]. 3.9
(i=a) (f -1 g-1 g f (52)
By (3.7) and the fact that & = 3 — 7. we obtain
f G== f —:1 )i} ; .
Sttt it 3.10
G py (3.10)
from (3.10), it follows that
F. g _u .5 F g , >
S T s S (S (3.11)
fog | S I S|
Substitution (3.11) into (3.9) gives
A = ay'. (3.12)
From (3.8) aud (3.12). we Lave
elor 1 e~Jor' v
f= e e U e (3.13)

We now claim that [a(z) + 1][a(z) — %] [a{z) —2] = 0 if and only if f and g satisfy one of the
cases (ii)-(iv) of the eonclusion of Theorem 1, and thus f is a Mdbius transformation of g.

In fact, if a(2) = % then from (3.12) we have v = 23 + ¢, where ¢ is a coustant. Thus, by
(3.7) and the fact that o = 3 — . it follows that

~=0 G+e ‘_L‘f _ 1. (3.14)

Rt =
Lw]
|
i
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Noting that N(r, f = a = g) # S{r. f). we can deduce that there exists a point z; such that
flz0) = g(z0) = alz) (# 0. 1, oc), which and (3.14) imply that €° = 1, and thus we obtain from
(3.14) that (9 — f)(g+ f —1) =0, that is f + g = L. Similarly, if a(z) = —1 or a(z) = 2, then
from (3.7). (3.12), the fact @ = 3 — ~, and the hypothesis of Theorem 1, we can also obtain
that f-g=1lor (f —1)(g — 1) = 1, respectively.

On the other hand, suppose that there exist four finite complex numbers ¢; (j = 1,2,3.4)
such that f = 2—:?%. where ey # oy, By this and (3.13) we get

23+ —20—c = eI 4 (cs—e)e I 4 (e3 4 es)el @
—ee=1t e _ (o) + er)eT + (es — e3)e=. (3.15)

We note first that -+ is not a constant. Otherwise, from (3.12) we know that 3 is also a
constant, and thus by (3.8) we can deduce that f is a constaut, a coutradiction. So from this
and the fact that a(z) Z 0. 1, we can also derive that both 7 — [ a7 and [ a7’ are not constants.
In the sequel, by repeatedly applyiug Lemma 1 to equality (3.15) and its modified forws, and
noting the fact that cjcy # esey. and that a(z) 2 0. 1, we can prove that one of the following
cases holds.

(a) ¥ —2 [ @y = constant, that is a(z) = 3,

(b) 2y — [ay' =constant. that is a(z) = 2. and

(¢) v+ [ay =constant. that is a(z) = —1.

For this purpose, we shall divide our argument into two cases.

Case 1. A= 2C3 e o QCQ — 0 = 0.
From (3.15) we have

cle"'-I o' | (s —cl]e_-I o | (e + c4)e'j . c_ie_w'-r . (c1 +eg)e+(cs—co)e™ = 0. (3.16)

We now need to consider the following seven subcases.
Subcase 1.1. cjeq(es — e1)(e3 +cs)(e; + 2)(eg — ¢3) # 0. Rewrite (3.16) as

[84]

62..?._I|~ ay' i 23 —Cx E..?._Jr ay' i C3 C.;E.?.+f a4’ _ Ca “,J' oy’ . e i 82.! o, (31?')
Cy — Cy Co —Cy Co — Cy Cy —Cy Cy — C4
Suppose that ~ + fa",-" Z constant. Noting the fact that v — f a'jr-'.(f av', and v are all not
conustant, so we can get by applving Lemma 1 to (3.17) that Ec_laeg’?". @v' = 1, and thus from
(3.17) it follows that

€

EE—C1 e fay 'y BTV Ccimut Ty Cy =Dty
B ey g O Slptfay S gotpilale g (3.18)
£y +Co Cy +—Co €1+ Co

By Lemma 1 and (3.18), we get —c—c.“—e'?"-*»'r 9" = 1. From this and (3.18) we get [ay' =
b i 10 o
constant, a contradiction.
Suppose that v + [ ay' = constant. Then we must have 2y — [ ay' 2 constant. Otherwise,
we shall find that v is a constant, which is impossible. Thus, from (3.17) and Lemma 1 we get

e . pog
%31'—2:-5”'-’ @ = 1. and thus again from (3.17) and Lemma 1 we have

(5] _ LA - e i [ o i’ Cy e P i
gmfov B " Lemyfa o 2 o]t = (3.19)
€1+ Cs C1 + Cs C1 1+
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Noting the assumption ~ + f avy' = constant. so we must have —2~ + f av' Z constant. By
applying Lemma 1 to (3.19), we deduce that v — [ 0y’ = constant. this is also a contradiction.
Therefore. the subcase 1.1 can not occur.

Next, we can use the similar method to deal with the following six subcases: ¢; =0; ¢y =0
but ¢ # 0: e —e; = 0. but cjey # 0; 3 + ¢ = 0, but cyey(es — 1) # 0: e1 + e = 0, but
cres{es — e ){eg + eg) # 0; ep — ¢ = 0. For the sake of simplicity, we omit the details,

Case 2. A:=2c3+cs— 200 —c1 # 0.
In fact, we shall verify that the case 2 can not occur by dividing it into five subcases. In
case 2, from (3.15) we lLave

(84} *'—f o iy [ as' Cy + £ |rcn' Cy T iy g i A L g £ W - s
—¢’ f =™ % —— ¢! — —e= T - el L+ e =l (320
y y 1 1 A A o
If cyes(es — e1)(es + eq){er + eo)(ey — e3) # 0, then by (3.20) and Lemma 1, we can get a
contradiction by noting that -, f av' and v — f av’ are all not constants. So we know that at

least one of the six numbers is zero.
Next, we consider the following five subcases.
Subcase 2.1. ¢; = 0. In this subcase, we have cocy # 0. By (3.20) we obtain

EE_JFCW' n e C‘le.lr“"' _ C__;e_,?*_"l" ay’ C_Q - e — 00 .

g e T ¢ t— ¢ =1. (3.21)
If ¢34+ ¢4 = 0, then ¢y = —cz # 0. So, from (3.21) and Lemma 1 we get ¢; — ey = 0, and

thus a contradiction.

If ¢g + s # 0, then we mmst have ¢g # (. Otherwise, by applying Lemma 1 to (3.21). we
can get a contradiction. Now again by (3.21) and Lemma 1 we get es — ¢z = (), and thus a
contradiction . Thus we have ¢; # 0.

We can easily dealt with the other four subcases cs = 0: 3 —er =0 s +ecs =01+ =0
by the similar method.

In the above five subcases, we have shown that cjey(cy —e1)(ey + ) (e1 +2) # 0. Therefore,
we can always obtaiu a contradiction by using Lemma 1 to (3.20) whether ¢ — ¢z = 0 holds or
not. The proof of Theorem 1 is completed.
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